Fresh Properties and Mix Design for 3D-Printable Decorative Concrete

Author(s):  
Г. С. Славчева ◽  
Е. А. Бритвина ◽  
М. А. Шведова

Постановка задачи. Рассмотрение закономерностей влияния вида цемента и модификаторов вязкости на технологические свойства смесей для 3D-печати определяется необходимостью одновременного обеспечения показателей пластичности и формоустойчивости смесей и декоративности композитов на их основе. Результаты. Представлены результтаты экспериментальных исследований основных реологических характеристик декоративного бетона для строительной 3D-печати. Выявлено влияние состава бетона на подвижность и формоустойчивость смеси. Установлено, что вид используемого цемента изменяет пластичность смеси и формоустойчивость под весом вышележащих слоев. Смеси с оптимальным компонентным составом декоративного бетона для строительной 3D-печати имеют следующие реологические характеристики: предел текучести K @ 1,0-2,2 кПа, структурная прочность s = 1,5-4,5 кПа, относительные пластические деформации Δ = 0,03-0,07 мм/мм. Данные характеристики определяют способность смеси к пластическому деформированию без разрушения структуры при течении, а также способность сохранять форму при печати слоя и нагружении вышележащими слоями. Выводы. Оптимальные диапазоны свойств смесей для 3D-печати могут быть изменены в 2-3 раза за счет использования цементов с различным гранулометрическим составом. Регулирование подвижности и формоустойчивости смесей с различными видами цемента главным образом обеспечивается применяемым модификатором вязкости. Statement of the problem. This paper present the rheological properties of 3D-printable decorative concrete. The effects of the mix proportion on its plasticity and shape stability are presented together. It has been established that a kind of cement changes the plasticity of fresh mixtures and its resistance to load during printing. Results. The fresh mixtures of 3D-printable decorative concrete with effective mix design had plastic yield value K @ 1.0-2.2 kPa, structural strength s = 1.5-4.5 kPa, value of plastic deformations Δ = 0.03-0.07 mm/mm. That has defined the ability of these mixes to plastically deform without any structure destruction and hold its shape, resist the deformation under compressions load during multi-layer casting. Conclusions. Shape stability of 3D-printable mix can be changed by 2-3 times by using cement with an efficient ranging of a particle size. The plasticity and shape stability of fresh mixes can be regulated using viscosity modifiers whose type depends on the type of cement.

Author(s):  
G. S. Slavcheva ◽  
E. A. Britvina ◽  
M. A. Shvedova

Statement of the problem. This paper present the rheological properties of 3D-printable decorative concrete. The effects of mix proportion on its plasticity and shape stability are presented together. It has been established that kind of cement changes plasticity of fresh mixtures and its resistance to load during the printing. Results. The fresh mixtures of 3D-printable decorative concrete with effective mix design had plastic yield value Ki 1.0 - 2.2 kPa, structural strength σ0 = 1.5 - 4.5 kPa, value of plastic deformations Δpl = 0.03 - 0.07 mm/mm. That is defined the ability of these mixtures to plastically deform without structure destruction and hold its shape, resist the deformation under compressions load during multi-layer casting.Conclusions. Shape stability of 3D-printable mixture can be changed by 2--3 times by using cement with efficient ranging of a particle size. The plasticity and shape stability of fresh mixtures can be regulated with usage of viscosity modifiers, the type of which depends on the type of cement.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5749
Author(s):  
Rebeca Martínez-García ◽  
P. Jagadesh ◽  
Fernando J. Fraile-Fernández ◽  
Julia M. Morán-del Pozo ◽  
Andrés Juan-Valdés

This article presents an overview of the bibliographic picture of the design parameter’s influence on the mix proportion of self-compacting concrete with recycled aggregate. Design parameters like water-cement ratio, water to paste ratio, and percentage of superplasticizers are considered in this review. Standardization and recent research on the usage of recycled aggregates in self-compacting concrete (SCC) exploit its significance in the construction sector. The usage of recycled aggregate not only resolves the negative impacts on the environment but also prevents the usage of natural resources. Furthermore, it is necessary to understand the recycled aggregate property’s role in a mixed design and SCC properties. Design parameters are not only influenced by a mix design but also play a key role in SCC’s fresh properties. Hence, in this overview, properties of SCC ingredients, calculation of design parameters in mix design, the effect of design parameters on fresh concrete properties, and the evolution of fresh concrete properties are studied.


2020 ◽  
Vol 21 ◽  
pp. 31-37
Author(s):  
Ali Abdulhasan Khalaf ◽  
Katalin Kopecskó

The research aims to determine the best combination of the controlling factors that govern geopolymer concrete’s mechanical and physical properties by utilizing industrial waste. Therefore, a review on the controlling factors was conducted. Firstly, it is to identify the controlling factors, namely chemical composition, alkali activation solution, water content, and curing condition. Secondly, understanding the relationship between these controlling factors and the properties of geopolymer concrete. These factors are analysed to the mix proportion components. Finally, a new proportion method is proposed based on combining ACI 211 standard and recommended molar ratios of oxides involved in geopolymer synthesis. The effect of aggregate has been taken into account by applying the absolute volume method in mix design. Based on the results of the study, it is expected to determine the optimal mix proportions based on multi-responses.


2013 ◽  
Vol 721 ◽  
pp. 420-424
Author(s):  
Guo Ju Ke ◽  
Bo Tian ◽  
Ji Liang Wang

The paper presents a new concept of ultra-filled by studying of classical aggregate filling theory. To resolve the problem involved in mix design with ultra-filled theory, a mix proportion design method of manufactured sand cement concrete is established. By calculation and test, the paper works out the rich plasma factor K1 and K2 of pavement manufactured cement concrete and the experimental result shows that the method is feasible and reasonable.


2012 ◽  
Vol 45 (8) ◽  
pp. 1221-1232 ◽  
Author(s):  
T. T. Le ◽  
S. A. Austin ◽  
S. Lim ◽  
R. A. Buswell ◽  
A. G. F. Gibb ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Shengli Li ◽  
Tingting Xu

The effect of NS particle size and content on the fresh properties of the grouting material based on the portland-sulphoaluminate composite system was analyzed. The experimental results indicated that air content increased and apparent density decreased, with increased NS content, but the NS particle sizes have minimal effect on the air content and apparent density. The setting time of mortar was significantly shortened, with increased NS content; however, NS particle sizes had little influence on the setting time. The effect of fluidity on the mortars adding NS with particle size of 30 nm is larger than NS with particle sizes of 15 and 50 nm and the fluidity decreased with increased NS content, but the fluidity of mortars with the particle sizes of 15 and 50 nm is almost not affected by the NS content. XRD analysis shows that the formation of ettringite was promoted and the process of hydration reaction of cement was accelerated with the addition of NS. At the microscopic level, the interfacial transition zone (ITZ) of the grouting material became denser and the formation of C-S-H gel was promoted after adding NS.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6792
Author(s):  
Jing Liu ◽  
Masoud Mohammadi ◽  
Yubao Zhan ◽  
Pengqiang Zheng ◽  
Maria Rashidi ◽  
...  

Self-consolidating concrete (SCC) is a well-known type of concrete, which has been employed in different structural applications due to providing desirable properties. Different studies have been performed to obtain a sustainable mix design and enhance the fresh properties of SCC. In this study, an adaptive neuro-fuzzy inference system (ANFIS) algorithm is developed to predict the superplasticizer (SP) demand and select the most significant parameter of the fresh properties of optimum mix design. For this purpose, a comprehensive database consisting of verified test results of SCC incorporating cement replacement powders including pumice, slag, and fly ash (FA) has been employed. In this regard, at first, fresh properties tests including the J-ring, V-funnel, U-box, and different time interval slump values were considered to collect the datasets. At the second stage, five models of ANFIS were adjusted and the most precise method for predicting the SP demand was identified. The correlation coefficient (R2), Pearson’s correlation coefficient (r), Nash–Sutcliffe efficiency (NSE), root mean square error (RMSE), mean absolute error (MAE), and Wilmot’s index of agreement (WI) were used as the measures of precision. Later, the most effective parameters on the prediction of SP demand were evaluated by the developed ANFIS. Based on the analytical results, the employed algorithm was successfully able to predict the SP demand of SCC with high accuracy. Finally, it was deduced that the V-funnel test is the most reliable method for estimating the SP demand value and a significant parameter for SCC mix design as it led to the lowest training root mean square error (RMSE) compared to other non-destructive testing methods.


Author(s):  
A. S. Adewuyi ◽  
K. H. Lasisi

To achieve a defined workability, strength and durability in construction works, concrete mixes are designed and this is done towards the selection and proportioning of constituents to produce a concrete with pre-defined characteristics both in fresh and hardened states. This study assesses the design of normal concrete mix based on the American Concrete Institute and Department Of Environment methods of mix. A characteristic strength of 20 N/mm2 was designed for using the two mix design methods. The concrete components used were tested for specific gravity; moisture content, particle size distribution, aggregate impact value, aggregate crushing value, slump test and compacting factor test and were found suitable. Two sets of concrete cubes (150 x 150 x 150 mm) each were cast using two mix designs. Compressive strengths were evaluated at 7, 14, 21, and 28 days of curing. The 28th day strengths of the two sets of concrete were found to be 30.5 N/mm2 and 29.5 N/mm2 for both DOE and ACI mix design methods which did not exceed the calculated targeted strength.


2007 ◽  
Vol 22 ◽  
pp. 77-82
Author(s):  
Volker Wesling ◽  
T. Rekersdrees

The subproject B5 examines the welding technological processing of locally hardened materials to produce structures and knots by means of high-freqency welding (HFW). The aim of B5 is a defined intervention in process and plant technology to control current voltage, temperature and compressive stress distribution of the entire weld seam. Particularly the effects on locally hardened areas have to be measured and optimized. Also the process specific advantages of HFW (e.g. plastic deformations and the application of an in situ heat treatment) have to be examined and optimized to improve structural strength.


2011 ◽  
Vol 368-373 ◽  
pp. 1416-1419 ◽  
Author(s):  
Yan Ping Sheng ◽  
Hai Bin Li ◽  
Bo Wen Guan

Moisture damage is one of the main forms of early failure in the asphalt pavement. Setting porous concrete permeable base can release water from the road structure. The common construction technology for porous concrete is traditional vibration compaction, which is helpful for the strength formation of the base, but unhelpful for the stability and smoothness of the base.In this sdudy, Compaction-free Porous Concrete (CPC) permeable base was proposed, which can not only satisfies the strength requirement of structures, but also guarantees the stability and the smoothness of the base. The idea of volume method was adopted on mix design of CPC. Mix proportion parameters such as aggregate dosage, cement dosage and water dosage were calculated and confirmed based on experimental study. The performance test results show that CPC designed by this method can satisfy the design standard. Accordingly, the design method of CPC is feasible.


Sign in / Sign up

Export Citation Format

Share Document