scholarly journals JUSTIFICATION OF THE USE OF THE ELECTRIC DRIVE AT THE COMPRESSOR STATIONS OF THE MAIN GAS PIPELINE

Author(s):  
Dmitriy Kononov

The situation with the drive of compressor stations of main gas pipelines is analyzed. Based on the calculations carried out, a conclusion is made about the efficiency of using electricity for gas pumping

Author(s):  
Z.N Matsuk ◽  
T.V Bunko ◽  
A.S Belikov ◽  
V.A Shalomov

Purpose. Ensuring the optimal mode of gas transportation from local sections of the main gas trunkline (GT), subject to repair (maintenance) and/or shutdown, to existing main gas trunkline based on the calculation, determination, and establishment of rational values of the operating modes of mobile compressor stations during the entire time of gas pumping. Methodology. The studies are based on existing physical principles and laws that describe the effect of the properties of natural gas and the geometric parameters of pipelines through which gas is pumped on the dynamics of changes in the mass and pressure of the transported gas. The calculation of the change in the mass and pressure of the gas in the gas pipeline from which the gas is pumped is based on a number of existing theoretical and empirical dependencies included in the generally accepted methods for their calculation. Known physical relationships and mathematical models are used to carry out the calculations. Findings. The mass approach to the issue of calculating the gas transportation time is more mathematically accurate than the volumetric one. The ratio of the relative mass to the relative gas pressure in a localized section of the main gas pipeline, during the entire pumping time, is a constant value. The use of the values of the quantities obtained at the point of intersection of the graphs of changes in the relative mass and relative pressure of the gas, in the preliminary calculation of the time for pumping gas, or pressure, or mass, or the volume of gas in each time interval, makes it possible to select the optimal rate of building up/reducing gas pressure by compressor units and optimal modes of gas transportation by operating gas pipelines during the operation of mobile compressor stations. Originality. The proposed approach to calculating and determining the time of gas pumping by mobile compressor stations from local sections of the main gas pipelines subject to repair (maintenance) and/or shutdown to sections of existing main gas pipelines proves that it is advisable to establish stable patterns in the transportation of natural gas using reciprocating compressor units only after modeling in time the change in the mass and pressure of gas in the local section of the main gas pipeline from which the gas is pumped. Practical value. The proposed approach to optimizing the time of gas pumping by mobile compressor stations makes it possible to increase the level of energy and resource efficiency of gas transmission enterprises, as well as to improve the technical and economic indicators of technologies for repairing the main gas pipelines, compressor stations of main gas pipelines associated with the need to bleed gas from sections of the main (technological) pipelines subject to repair (maintenance) and/or shutdown. Optimization of gas pumping time significantly reduces the time spent by employees of gas transmission enterprises under the influence of hazardous and harmful production factors, thereby reducing the level of relevant risks. Gas emissions and associated risks are reduced by 90%.


Author(s):  
V. Ya Grudz ◽  
N. B. Slobodian

An important aspect of improving the hydraulic efficiency of pipeline transport is its periodic cleaning with mechanical cleaning devices. Cleaning gas pipelines with cleaning pistons is a technologically complex process. It is advisable to adjust the speed of the piston to increase the efficiency of cleaning the pipeline with the crossed track profile. On the ascending and plain sections of the route, maintain a high speed of movement of the device, and on the descending it to reduce. To slow down the movement of the piston in the downstream sections of the main gas pipelines, it is proposed to change the technological scheme of the linear part. It is suggested to use a looping connection to change the flow chart. The change of the speed of movement of the treatment device when changing the technological scheme of the main gas pipeline was evaluated. The influence on the dynamics of the movement of the cleaning piston of the main parameters of the pipeline and looping, as well as the parameters of the movement of the piston itself, are investigated. A mathematical model of the process is built, on the basis of the implementation of which the regularities of the treatment device movement when changing the technological scheme of the gas pipeline are established. An equation was obtained to find the ratio of the mass flow rates of gas in the main gas pipeline before and after connecting the loop, which can be solved by the iteration method. The algorithm is developed and the program of calculation of the degree of reduction of the speed of movement of the piston is developed, depending on the kind of technological parameters and technical characteristics of the treatment device and the pipeline. Based on the calculations, the graphical dependences of the relative speed of the piston on the technological parameters and technical characteristics of the main pipeline were constructed. The authors found that the greatest effect on the degree of reduction of the speed of the piston has the length of the loop. It has been investigated that a decrease in the initial pressure and an increase in the final pressure, as well as an increase in the pressure drop at the moving boundary, lead to an improvement in the braking conditions


Author(s):  
V. Y. Grudz ◽  
V. V. Grudz ◽  
V. M. Bodnar ◽  
M. S. Chernetsky

The classification of failures and damages of the linear part and its separate elements is carried out, variants of technology of carrying out of preventive and repair-restoration works and modular-technological structure of repair and maintenance units are formulated. Particular attention is paid to improving the efficiency of the operation of a separate repair and maintenance unit during maintenance and repair with a known layout scheme and a certain mode of control and restoration works by choosing the optimal technology of work and rational equipment of units and crews leaving for the route. On the basis of the analysis of the technology of work execution it is shown that only a small part of the repair and maintenance measures requires the use of powerful machinery and equipment, which include the first level of priority work on the replacement of gas pipeline sections, work, damage elimination, work on elimination of significant pipeline displacements, work for restoration of soil collapse of the main gas pipeline. In addition, each type of work on the objects of the linear part requires the use of the same vehicles. The type and number of vehicles depend on the particular operating conditions, as well as on the possibility and feasibility of purchasing and operating a particular type of equipment. The method of estimation of indexes of maintenance of linear part of main gas pipelines and efficiency of functioning of repair and maintenance units during maintenance and repair is developed.


2020 ◽  
Vol 1 (1) ◽  
pp. 50-63
Author(s):  
Marina G. Uspeneva ◽  
Andrej M. Astapov

During the construction of oil and gas pipelines, a complex of engineering and geodetic works is necessary to ensure the geometric parameters of the designed routes during their laying. Therefore, the development of new methods for performing engineering and geodetic works for tracing linear structures using modern instruments is an urgent task. The purpose of this research is to analyze the modern methodology for the implementation of engineering and geodetic works for surveying and construction of the gas pipeline. The object of surveying is the route of the main gas pipeline «Aikhal-Udachny». The approbation of the methodology for performing engineering and geodetic works surveying for the «Aikhal-Udachny» gas pipeline was carried out and an analysis of the results was given.


2019 ◽  
pp. 102-111
Author(s):  
Aleksandr A. Razboynikov ◽  
Nikolay S. Barsukov

Today evaluation of the technical assessment of the linear part of main gas pipeline is one of the most important tasks of pipeline operation. However, many assessment methodologies provide only a partial picture of the technical condition and don’t take into account the conditions for pipeline laying. This article discusses the improvement of methods for technical assessment of main gas pipelines.


Author(s):  
О. B. Vasyliv ◽  
О. S. Titlov ◽  
Т. А. Sagala

The current state of transit of natural gas through the Ukrainian gas transmission system (GTS) is estimated in the paper. The prerequisites for further reduction of the GTS load in the coming years are considered, in particular in the direction of Europe through the gas measuring station "Orlivka" (south direction), taking into account the construction of alternative bypass gas pipelines. On the basis of the review of literature sources on the problem of efficient operation of gas pipelines under conditions of underloading, a method for determining the capacity and energy consumption of the gas pipeline for a given combination of working gas pumping units (GPU) was developed. The Ananyev-Tiraspol-Izmail gas pipeline at Tarutino-Orlivka section was selected as the object of research. The methodology includes the calculation of the physical properties of gas by its composition, the calculation of gas compression, the calculation of the linear part, the gas flow to the compressor station's own needs, and the calculation of the total power of the gas-pumping units under the specified technological limitations. With the help of the original software developed in the MATLAB programming language, cyclical multivariate calculations of the capacity and energy consumption of the gas pipeline were carried out and the operating modes of the compressor shop were optimized in the load range from 23 ... 60 million m3/day. Optimization criterion is the minimum total capacity of the GPU. Variable parameters at the same time are the speeds of the superchargers, different combination of working GPU, load factor. According to the results of the optimization graphical dependences were constructed: the optimum frequency of the rotor of the supercharger on the performance of the pipeline; changes in power and pressure depending on the performance of the pipeline when operating a different combination of superchargers. Recommendations have been developed to minimize fuel gas costs at the compressor station.


Author(s):  
Vladimir Titov ◽  
◽  
Oleg Kryukov ◽  

The theoretical aspects of the development of an invariant control system for high-power automated electric drives of oil and gas pipeline facilities are considered. A generalized mathematical model of the compression process is proposed, depending on the production, structural and climatic parametric disturbances on the electric drive. The results of the synthesis and analysis of invariant control systems for changing the parameters of the main factors of technological processes are presented. Using a concrete example of a compressor station of a main gas pipeline, the possibilities of stable operation of electric drives with multiple regression algorithms that provide resistan-ce to external influences and transition to low-population technologies for servic-ing electric drive units are justified.


Sign in / Sign up

Export Citation Format

Share Document