The use of assembled cutting tool with damping elements to reduce mechanical vibrations

Author(s):  

Aspects of vibration reduction during machining on metal-cutting machines to improve the quality of machined surfaces at moderate and high-speed cutting modes are considered. End mills with damping elements made of different materials, which provide the control of tool rigidity, are developed. Keywords: vibrations, end mill, vibrations, machined surface, damping. [email protected]

2006 ◽  
Vol 315-316 ◽  
pp. 474-480
Author(s):  
Dun Wen Zuo ◽  
Yoshihiro Kawano

End mills with small diameter have found their wide application with the development of high-speed cutting. It becomes more and more important to develop effective methods to monitor and control the milling process with small end mills. In this paper, a measuring system of projection image for small end mills is introduced, and the application of the projection image to monitor the behavior of the end mill is discussed. It is found that for static state of the end mill, the measurement accuracy can be easily controlled within 1 μm. When the end mill rotates, it is not so difficult to control the accuracy within 3 μm. By using of the change in image width, the radial wear of end mill can be predicted. On the other hand, if the centre shift of the image is pre-measured, the deflection of the end mill during cutting can be predicted.


2020 ◽  
Vol 836 ◽  
pp. 118-123
Author(s):  
S.K. Kargapol’tsev ◽  
V.I. Shastin ◽  
V.E. Gozbenko

The paper reflects the relevance of hardening the working surfaces of the tool, where the surface layer plays a fundamental role. The main factors determining the wear resistance of the tool and their influence on the quality of the processed surface are analyzed. The purpose of the research is to study the effect of laser modification of tool alloys on wear resistance and on the roughness parameters of the machined surface. A small-sized drill bit (steel P6M5) and carbide inserts T15K6 are used as objects of research. The paper presents the results of experimental studies on the impact of laser radiation on the microstructure of materials, indices of wear resistance and quality parameters of the treated surface. It is established that there is a certain relationship between these indices. The modes of laser modification of the tool most acceptable for practical use are determined. Along with an increase in the wear resistance of a metal-cutting tool, a manifestation of the effect of an increase in surface roughness indices is found and experimentally confirmed. It is established that hardening of the surface layer is caused by structural and phase transformations with enhanced physical and mechanical properties, and the roughness indices depend on the degree of dispersion (amorphization) of the modified layer.


2012 ◽  
Vol 500 ◽  
pp. 82-88 ◽  
Author(s):  
Cai Xu Yue ◽  
Xian Li Liu ◽  
Da Wei Sun ◽  
Ming Yang Wu

For its good processing flexible, economic and environmental protection performance, hardened steel GCr15 is used widely in car and energy industry. Although surface quality in machining process is not controlled well, that restricts application of hardened steel GCr15 extensive to a certain degree. Therefore, this study revealed the effect of cutting parameters on surface roughness. Also influence of cutting conditions on surface morphology and organization generation mechanism of subsurface were stuied for high-speed cutting hardened steel GCr15. Appear reasons of plastic side flow on surface was researched. Also, effect of tool wear on surface quality was studied as well. The research results provided theoretical basis for rational choice for high speed hardened steel cutting process.


2021 ◽  
Vol 248 ◽  
pp. 04018
Author(s):  
Sergey Grigoriev ◽  
Mars Migranov ◽  
Abdumalik Seitkulov

In the conditions of high-speed processing of parts of complex configuration, with a large end and longitudinal length, from hard-to-work steels and alloys, it is difficult to ensure the wear resistance of the cutting tool in the aisles of one technological passage. To ensure the appropriate quality indicators of the surface layer, it is impossible to replace a worn-out cutting tool. In connection with the above, the problem of ensuring the operability (wear resistance) of the cutting tool is acute. The results of theoretical and experimental studies of contact phenomena in blade cutting based on the thermodynamics of non – equilibrium processes and from the standpoint of self-organization of the tribosystem are presented. the developed thermodynamic model of blade processing with variable cutting modes (non-stationary) allows to minimize the wear of the cutting tool and generally increase production efficiency by accelerating the drive of the main movement of the metal-cutting machine.


2012 ◽  
Vol 268-270 ◽  
pp. 496-499 ◽  
Author(s):  
Wei Fan ◽  
Xin Liu

The cutting principle of high speed machining is analyzed, and the key technology of building high speed cutting finite element simulation model is systemic explained. By simplifying high speed cutting process, using the fastest solution of nonlinear finite element software ADINA which is development in recent years to establish the three dimensional finite element model of high speed metal cutting, and to predict the cutting force of different cutting tool geometry parameter combination of high speed cutting process, the high speed cutting processing cutting tool analysis and processing parameter optimization analysis method are put forwarded, so as to provide a new tool for the research of high speed machining process and provide basis for the cutting tool choice during high-speed nc cutting process.


2013 ◽  
Vol 797 ◽  
pp. 208-213 ◽  
Author(s):  
Jun Shinozuka

The orthogonal cutting tests of oxygen free copper with a cutting speed of from 1 m/s to 210 m/s were performed. The effect of the high-speed cutting on the improvement over the quality of the machined surface, which was evaluated by the thickness of the plastic flow layer and the surface roughness, was examined. By employing the simple shear plane model, the cutting mechanism was analyzed. The results were compared with the results for cutting of aluminum alloy obtained previously. For oxygen free copper, the resultant cutting force does not increase in high-speed cutting. However, the friction angle on the tool-chip interface rises clearly in high-speed cutting. This paper discusses the reason for the increase in the friction angle at the tool-chip interface by investigating the stress and temperature fields on the shear plane and the tool-chip interface.


Author(s):  
Б.Я. Мокрицкий ◽  
В.М. Давыдов

Актуальность. Изложены результаты совершенствования токарной обработки заготовок ответственных деталей морских судов, особенно подводных, и сооружений, подвергаемых в процессе эксплуатации агрессивному воздействию морской воды, например, валопроводов судов. Такие детали, как правило, выполняются из специализированных труднообрабатываемых нержавеющих сталей. Специфические свойства таких сталей создают серьёзные сложности при их обработке лезвийным металлорежущим инструментом. Например, период стойкости типового токарного резца отечественных или зарубежных изготовителей не превышает 40 минут. Это не приемлемо для сегодняшнего уровня высокопроизводительной обработки. Целью работы является повышение эффективности токарной обработки таких сталей. Решение этой задачи достигнуто за счёт разработки новых покрытий для таких режущих пластин. Методы исследования. Для разработки использовано имитационное моделирование как метод исследования. Оно выполнено в программной среде Deform. Она адаптирована под решаемую задачу. Результаты. Разработан металлорежущий инструмент с покрытиями, обеспечивающий повышение периода стойкости в 2 и более раз. Вывод. Поставленная цель достигнута. Обеспечено повышение периода стойкости металлорежущего инструмента в 2 и более раз без снижения производительности обработки и с повышением качества поверхности обработанной заготовки детали. The relevance of the research is due to the fact, that a number of parts of marine vessels and structures must be made of corrosion-resistant steels. These are specialized stainless steels. They have a lot of chrome and nickel. It makes difficult to process blanks of details by metal-cutting tools. Its durability period is insufficient. The aim of the research is to increase the efficiency of turning such steels. Efficiency here means an increasing of the service life of a metal-cutting tool without decreasing of the processing performance and the quality of the machined surface of the detail. The software environment Deform was used as a method of the simulation research. Initial and output criterias have been developed for it. For this purpose, the software environment is adapted to the solving problem. As input parameters, the architecture of the coating is set, when applied to the hard-alloy material, an increase of the tool life is expected. The following results were obtained. Coatings for turning tools, providing the increase of the tool life to 2 or more times, were designed. The output. The setted goal has been achieved. The service life of the metal-cutting tool is increased to 2 or more times without decreasing of the processing performance and with an increase of the surface quality of the processed details.


1998 ◽  
Vol 2 ◽  
pp. 115-122
Author(s):  
Donatas Švitra ◽  
Jolanta Janutėnienė

In the practice of processing of metals by cutting it is necessary to overcome the vibration of the cutting tool, the processed detail and units of the machine tool. These vibrations in many cases are an obstacle to increase the productivity and quality of treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a very diverse phenomenon due to both it’s nature and the form of oscillatory motion. The most general classification of vibrations at cutting is a division them into forced vibration and autovibrations. The most difficult to remove and poorly investigated are the autovibrations, i.e. vibrations arising at the absence of external periodic forces. The autovibrations, stipulated by the process of cutting on metalcutting machine are of two types: the low-frequency autovibrations and high-frequency autovibrations. When the low-frequency autovibration there appear, the cutting process ought to be terminated and the cause of the vibrations eliminated. Otherwise, there is a danger of a break of both machine and tool. In the case of high-frequency vibration the machine operates apparently quiently, but the processed surface feature small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.


Alloy Digest ◽  
1985 ◽  
Vol 34 (12) ◽  

Abstract TATMO V-N is an AISI Type M7 high-speed steel modified by alloy balancing and a nitrogen addition to develop superior hardness response in heat treatment. It is an excellent grade for many cutting-tool applications requiring an optimum balance of red hardness, edge toughness and wear resistance, such as drills, taps, end mills, reamers and milling cutters. Its combination of outstanding properties and high hardness makes Tatmo V-N a logical alternate for cobalt high-speed steels in many cutting-tool applications. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: TS-452. Producer or source: Latrobe Steel Company.


Author(s):  
Nguyen Duy Canh ◽  
Nguyen Van Canh ◽  
Pham Xuan Hong ◽  
Nguyen Ngoc Hue ◽  
Tran Dinh Duy

Sign in / Sign up

Export Citation Format

Share Document