scholarly journals APPLICATION OF MIMO TECHNOLOGY IN MODERN WIRELESS COMMUNICATION SYSTEMS OF DIFFERENT GENERATIONS

T-Comm ◽  
2021 ◽  
Vol 15 (4) ◽  
pp. 4-12
Author(s):  
Mikhail G. Bakulin ◽  
◽  
Vitaly B. Kreyndelin ◽  
Denis Y. Pankratov ◽  
◽  
...  

Multiple Input Multiple Output (MIMO) technology is widely used in modern IEEE radio access systems. There is a tendency to increase the number of antennas, which is also confirmed by the development of MIMO technology in mobile communication systems of 3GPP standards. Requirements for modern radio communication systems are constantly increasing. As the radio frequency spectrum becomes increasingly scarce, it becomes increasingly difficult to transmit large amounts of information by expanding the frequency channel bandwidth. Therefore, the use of MIMO technology to increase the spectral and energy efficiency of communication systems is relevant. In 5G systems, Massive MIMO technology is used, when using which the number of antennas is measured in tens and hundreds. The characteristics of various versions of MIMO technology implemented in the existing standards 802.11n, 802.11ac, 802.11ax, as well as in the promising standard 802.11be (6G systems) are described in detail. Technologies of directional transmission, spatial multiplexing, selection of antennas as particular cases of precoding are considered. Trends of MIMO technology development in wireless communication systems are shown.

MIMO technology offers large improvements in data transfer and connection range no bandwidth extra or processing potential in wireless communication,. Multiple transmitters and receivers are used to simultaneously transfer enormous amounts of data. Using many antennas transmitting and receiving, efficiency can be enhanced for wireless communication systems operating in fading environments. But the key downside in the new MIMO scheme, due to multiple Radio Frequency chains, is increased complexity and high cost. A daunting incentive is the development of techniques to reduce hardware and computing costs of the systems with a huge amount of antennas. The optimum selection of the receiver antenna subset is a very effective approach to achieving this goal. Genetic algorithm is used in this paper to choose the receivers from the available set of antennas that would then be compared with an existing receiving antenna selection process.


2020 ◽  
Vol 23 (1) ◽  
pp. 159-171
Author(s):  
Ahmad Baheej

The multipath phenomenon is a major factor that is continually affected negatively the performance of wireless communication systems. Since the receiver gets different copies of the transmitted signal from various paths at different times. Consequently, destructive or constructive interference can occur. Therefore, the performance of wireless communication systems is poor in term of bit error rate. This phenomenon can be taken as an advantage if the multiple – input – multiple – output antenna systems are employed at both transmitter and receiver sides (antenna diversity) to improve the bit error rate performance. This paper focuses on the combination of multipath forward error correction diversity technique with vertical-Bell laboratories layered space-time coding. This will lead to enhance the bit error rate in wireless communication systems. The proposed system used Rayleigh and additive white Gaussian noise as two different channel models. The multipath forward error correction diversity technique treats the multipath propagated signals as unessential copies, to utilise them to enhance the bit error rate limitation in the multiple – input – multiple – output systems. The simulation results showed that the performance of the proposed system can be gradually improved by increasing the number of utilised multipath signals in the multipath forward error correction diversity technique


Author(s):  
Zhaocheng Wang ◽  
Jiaxuan Chen

With the escalation of heterogeneous data traffic, the research on optical wireless communication (OWC) has attracted much attention, owing to its advantages such as wide spectrum, low power consumption and high security. Ubiquitous optical devices, e.g. light-emitting diodes (LEDs) and cameras, are employed to support optical wireless links. Since the distribution of these optical devices is usually dense, multiple-input-multiple-output (MIMO) can be naturally adopted to attain spatial diversity gain or spatial multiplexing gain. As the scale of OWC networks enlarges, optical MIMO can also collaborate with network-level operations, like user/AP grouping, to enhance the network throughput. Since OWC is preferred for short-range communications and is sensitive to the directions/rotations of transceivers, optical MIMO links vary frequently and sharply in outdoor scenarios when considering the mobility of optical devices, raising new challenges to network design. In this work, we present an overview of optical MIMO techniques, as well as the cooperation of MIMO and user/AP grouping in OWC networks. In consideration of the challenges for outdoor OWC, key technologies are then proposed to facilitate the adoption of optical MIMO in outdoor scenarios, especially in vehicular ad hoc networks. Lastly, future applications of MIMO in OWC networks are discussed. This article is part of the theme issue ‘Optical wireless communication’.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1567
Author(s):  
Sang-Hoon Lee ◽  
Ahmed Al Al Amin ◽  
Soo-Young Shin

Spectral efficiency is a major concern for future 6G wireless communication systems. Thus, an appropriate scheme is needed to provide channel capacity improvement for multiple transmitters and receiver-based wireless communication systems without consuming extra resource for communication (e.g., frequency/time/code) or causing interference. Therefore, to fulfill the mentioned requirements for the future 6G wireless network, orbital angular momentum-based multiple-input-multiple-output (OAM-MIMO) multiplexing technique is incorporated with the receive antenna shift keying (RASK) technique in this study (termed as the OAM-MIMO-RASK scheme). OAM-MIMO-RASK can transfer multiple symbols from multiple transmitters to different receivers simultaneously by using multiple subchannels using the OAM and RASK techniques without any interference or additional resource (frequency/time/code). The numerical results illustrated that the proposed OAM-MIMO-RASK can achieve almost double capacity than the existing OAM-MIMO scheme and significantly higher capacity than the existing RASK-based scheme for different values of signal-to-noise ratio. Moreover, the simulation result is validated by the theoretical result which is also shown by the numerical result. In addition, due to different normalized distances from the transmitters and receivers, the proposed OAM-MIMO-RASK scheme can achieve almost double capacity than the existing OAM-MIMO scheme by using OAM-MIMO and RASK technique effectively which is also depicted by the numerical results.


Sign in / Sign up

Export Citation Format

Share Document