scholarly journals SEMI-INFINITE WAVEGUIDE MADE OF PIEZOELASTIC MATERIAL OF CLASS 6MM

2020 ◽  
Vol 6 (2) ◽  
pp. 16-19
Author(s):  
M. V. Belubekyan ◽  
◽  
A. A. Papyan ◽  

The problems of coupled physical fields, such as the interaction of mechanical and electromagnetic fields, piezoelectric effect, electrostriction and others, are the most urgent. The study of the issues of wave propagation in piezoelectric materials is also relevant. In this paper the propagation of a monochromatic electroelastic signal in a semi-infinite piezoelectric layer is considered. Let's consider different cases of the boundary conditions, from which localized vibrations can be obtained in the vicinity of the free edge.

1962 ◽  
Vol 52 (4) ◽  
pp. 807-822 ◽  
Author(s):  
John T. Kuo ◽  
John E. Nafe

abstract The problem of the Rayleigh wave propagation in a solid layer overlying a solid half space separated by a sinusoidal interface is investigated. The amplitude of the interface is assumed to be small in comparison to the average thickness of the layer or the wave length of the interface. Either by applying Rayleigh's approximate method or by perturbating the boundary conditions at the sinusoidal interface, plane wave solutions for the equations which satisfy the given boundary conditions are found to form a system of linear equations. These equations may be expressed in a determinant form. The period (or characteristic) equations for the first and second approximation of the wave number k are obtained. The phase and group velocities of Rayleigh waves in the present case depend upon both frequency and distance. At a given point on the surface, there is a local phase and local group velocity of Rayleigh waves that is independent of the direction of wave propagation.


Geophysics ◽  
1978 ◽  
Vol 43 (6) ◽  
pp. 1099-1110 ◽  
Author(s):  
Albert C. Reynolds

Many finite difference models in use for generating synthetic seismograms produce unwanted reflections from the edges of the model due to the use of Dirichlet or Neumann boundary conditions. In this paper we develop boundary conditions which greatly reduce this edge reflection. A reflection coefficient analysis is given which indicates that, for the specified boundary conditions, smaller reflection coefficients than those obtained for Dirichlet or Neumann boundary conditions are obtained. Numerical calculations support this conclusion.


Author(s):  
A. V. G. Cavalieri ◽  
W. R. Wolf ◽  
J. W. Jaworski

We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k 0 based on the plate length. However, at low k 0 , finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k 0 . The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k 0 for perforated elastic plates.


1998 ◽  
Vol 65 (2) ◽  
pp. 476-478
Author(s):  
N. Morozov ◽  
I. Sourovtsova

The study of the problem of wave propagation in elastic wedge meets considerable difficulties, which are intensified by the presence of waves of two types that interact with each other through boundary conditions. However, some special surface loading permits separation of the potentials in the boundary conditions, but even in this case the problem cannot be simply reduced to two acoustic ones. The reason for this is that the edge condition cannot be satisfied if the disturbances are limited to a single type (longitudinal or shear). In spite of this the problem, such a special boundary loading nevertheless turns out to be very similar to the acoustic one, which makes it possible to find a closed analytical solution by means of the modified Kostrov method (Kostrov, 1966) and the idea of extension of operators. A similar approach is used for the study of the general problem of loading of the body with several angles.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kyungrim Kim ◽  
Jinwook Kim ◽  
Xiaoning Jiang ◽  
Taeyang Kim

In force measurement applications, a piezoelectric force sensor is one of the most popular sensors due to its advantages of low cost, linear response, and high sensitivity. Piezoelectric sensors effectively convert dynamic forces to electrical signals by the direct piezoelectric effect, but their use has been limited in measuring static forces due to the easily neutralized surface charge. To overcome this shortcoming, several static (either pure static or quasistatic) force sensing techniques using piezoelectric materials have been developed utilizing several unique parameters rather than just the surface charge produced by an applied force. The parameters for static force measurement include the resonance frequency, electrical impedance, decay time constant, and capacitance. In this review, we discuss the detailed mechanism of these piezoelectric-type, static force sensing methods that use more than the direct piezoelectric effect. We also highlight the challenges and potentials of each method for static force sensing applications.


2021 ◽  
Author(s):  
Chaojie Chen ◽  
Shilong Zhao ◽  
Caofeng Pan ◽  
Yunlong Zi ◽  
Fangcheng Wang ◽  
...  

Abstract Polymer-based piezoelectric devices are promising for developing future wearable force sensors, nanogenerators, and implantable electronics etc. The electric signals generated by them are often assumed as solely coming from piezoelectric effect. However, triboelectric signals originated from contact electrification between the piezoelectric devices and the contacted objects can produce non-negligible interfacial electron transfer, which is often combined with the piezoelectric signal to give a triboelectric-piezoelectric hybrid output, leading to an exaggerated measured “piezoelectric” signal. Herein, a simple and effective method is proposed for quantitatively identifying and extracting the piezoelectric charge from the hybrid signal. The triboelectric and piezoelectric parts in the hybrid signal generated by a poly(vinylidene fluoride)-based device are clearly differentiated, and their force and charge characteristics in the time domain are identified. This work presents an effective method to elucidate the true piezoelectric performance in practical measurement, which is crucial for evaluating piezoelectric materials fairly and correctly.


Sign in / Sign up

Export Citation Format

Share Document