scholarly journals Effect of temperature and salt on PVDF membrane wetting properties

Author(s):  
Kefan Jiang ◽  
◽  
Hooman Chamani ◽  
Takeshi Matsuura ◽  
Dipak Rana ◽  
...  

Membrane distillation (MD) is a thermally driven separation process. Despite many advantages over other membrane separation processes, pore wetting hampers the wide commercial applications of the MD process. In this paper, the effect of temperature and presence (or absence) of salt in the feed solution on the wetting properties of commercial polyvinylidene fluoride (PVDF) membrane during a period of eight weeks was investigated. Liquid entry pressure (LEP) and water contact angle (WCA) were employed to characterize the wetting properties of the PVDF membrane. The result shows that the temperature has a significant impact on the decrease of the contact angle of the PVDF membrane.

2015 ◽  
Vol 14 (2) ◽  
pp. 38
Author(s):  
Adil Hatem Rashid ◽  
M. D. Irfan Hatem ◽  
Muhammad Syarhabil Ahmad ◽  
Mohd. Hafiz Dzarfan Othman

Membrane separation plays an important role in chemical industry (Prabhat et al. 2011). Pervaporation is one of the most promising membrane separation processes which is used in a wide range of applications such as separation of organic mixtures and dehydration of solvents. This study investigated the effect of polymer concentration on the morphology of pervaporation membrane, where polyvinylidene fluoride (PVDF) was chosen as the base polymeric material while phase inversion method was employed as a technique to prepare an asymmetric PVDF membrane. The polymer concentration in dope solution was varied from 16 to 20wt% and the prepared membranes were characterized in terms of its structure, porosity, contact angle, and pore size. Five PVDF membrane samples were prepared (without any post-treatment) with polymer concentration of 16, 17, 18, 19, and 20wt% respectively. Depending on permeating component, two main areas of pervaporation processes can be identified: hydrophobic and hydrophilic and consequently two types of membranes could be observed: hydrophobic and hydrophilic membranes. From the results, it was found that the increase in polymer concentration has produced membranes with low pore size and porosity and as a result, high contact angle (low hydrophilicity).The highest contact angle of 83º was found for membrane with highest polymer concentration of 20wt% with the lowest pore size and porosity of (0.4156µm and 65%) respectively. The lowest contact angle of 76º was found for membrane with the lowest polymer concentration of 16wt% with the highest pore size and porosity (0.8671µm and78%) respectively.


2014 ◽  
Vol 69 (9) ◽  
Author(s):  
S. O. Lai ◽  
K. C. Chong ◽  
K. M. Lee ◽  
W. J. Lau ◽  
B. S. Ooi

Membrane distillation (MD) is one of the recent rising membrane separation techniques adopted in the desalination and wastewater treatment. Unlike other pressure-driven separation processes such as reverse osmosis and nanofiltration, MD is a thermal-driven process which involves vapor pressure difference across the feed and permeates solutions. As such, MD requires low energy consumption. Hydrophobic polymeric materials such as polyvinylidene fluoride (PVDF) are frequently used in direct contact membrane distillation (DCMD) due to low surface energy and promising thermal resistance. In this study, the DCMD hollow fiber membranes were separately prepared with PVDF and PVDF blended with lithium chloride (LiCl) through dry/wet phase inversion method. Subsequently, the membranes were used in a DCMD process to remove sodium chloride (NaCl) under different feed inlet temperatures to examine the effect of LiCl additives on the neat membrane. The result showed that by adding LiCl into the neat membrane solution, the finger-like structure was change to a sponge-like structure with microvoids. Furthermore, the performance of the LiCl additive membrane in term of permeate flux was found to be 20% higher compared to that of the neat membrane. Other results of the membrane characteristics were also discussed.      


2018 ◽  
Vol 78 (12) ◽  
pp. 2532-2541 ◽  
Author(s):  
N. Hamzah ◽  
M. Nagarajah ◽  
C. P. Leo

Abstract Fat, oil and grease in wastewater generated from household kitchens, restaurants and food processing plants affect sewer systems, water resources and environment adversely. Hence, membrane distillation of saline and oily water was studied using a nearly superhydrophobic membrane developed in this work. Polyvinylidene fluoride (PVDF) membrane incorporated SiO2 nanoparticles was synthesized via phase inversion with dual baths and modified using hexadecyltrimethoxy silane. The volume ratio of silane to ethanol was varied between 1:200 to 1:25. The membrane characteristics were examined using a goniometer, a porometer, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The PVDF-SiO2 membrane modified using the volume ratio of 1:50 achieved the highest water contact angle of 141.6° and LEP of 2.642 bar. This membrane was further tested in membrane distillation to observe the permeate flux of distilled water, saline solution (1 M NaCl) as well as saline and oily solution (1 M NaCl; 1,000 ppm of palm oil). The modified PVDF/SiO2 showed high permeate flux which is nearly four times of the permeate flux of neat PVDF membrane, but still susceptible of salt and oil fouling as shown in SEM images.


Membranes ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 60 ◽  
Author(s):  
Mustafa Al-Furaiji ◽  
Jason T. Arena ◽  
Jian Ren ◽  
Nieck Benes ◽  
Arian Nijmeijer ◽  
...  

A composite, three-layered membrane for membrane distillation was prepared from electrospun polyvinylidene fluoride (PVDF) nanofibers supported by commercial polyethersulfone (PES) nanofiber based nonwoven from E.I. duPont de Nemours company (DuPont). The membranes were tested in direct contact membrane distillation (DCMD) using a 5.0 M sodium chloride brine as a feed solution. The triple layer membrane combines the hydrophobicity of PVDF and the robustness of the PES. The triple layer membrane demonstrated excellent performance in DCMD (i.e., relatively high water flux compared to the commercial PVDF membrane and a complete salt rejection of the brine) with mechanical properties imparted by the PES layer. This work is the first to demonstrate the use of a commercially produced nanofiber nonwoven for membrane distillation.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 228
Author(s):  
Wan Aisyah Fadilah Wae AbdulKadir ◽  
Abdul Latif Ahmad ◽  
Ooi Boon Seng

The hydrophobic membranes have been widely explored to meet the membrane characteristics for the membrane distillation (MD) process. Inorganic metal oxide nanoparticles have been used to improve the membrane hydrophobicity, but limited studies have used nano clay particles. This study introduces halloysite nanotube (HNT) as an alternative material to synthesis a hydrophobic poly(vinylidene fluoride) (PVDF)-HNT membrane. The PVDF membranes were fabricated using functionalized HNTs (e.g., carnauba wax and 1H,1H,2H,2H-perfluorooctyl-trichlorosilane (FOTS)). The results were determined by Fourier transform infrared-attenuated total reflection, scanning electron microscope, goniometer and porometer to determine the desired hydrophobic membrane for direct contact membrane distillation (DCMD). The addition of FOTS-HNT (fs-HNT) and carnauba wax-HNT (fw-HNT) in the PVDF membrane enhanced the water contact angle (CA) to 127° and 137°, respectively. The presence of fw-HNT in the PVDF membrane exhibited higher liquid entry pressure (LEP) (2.64 bar) compared to fs-HNT in the membrane matrix (1.44 bar). The PVDF/fw-HNT membrane (Pfw-HNT) obtained the highest flux of 7.24 L/m2h with 99.9% salt removal. A stable permeability in the Pfw-HNT membrane was obtained throughout 16 h of DCMD. The incorporation of fw-HNT in the PVDF membrane had improved the anti-wetting properties and the membrane performance with the anti-fouling effect.


2017 ◽  
Vol 34 (1) ◽  
Author(s):  
Rakesh Baghel ◽  
Sushant Upadhyaya ◽  
Kailash Singh ◽  
Satyendra P. Chaurasia ◽  
Akhilendra B. Gupta ◽  
...  

AbstractThe main aim of this article is to provide a state-of-the-art review of the experimental studies on vacuum membrane distillation (VMD) process. An introduction to the history of VMD is carried out along with the other membrane distillation configurations. Recent developments in process, characterization of membrane, module design, transport phenomena, and effect of operating parameters on permeate flux are discussed for VMD in detail. Several heat and mass transfer correlations obtained by various researchers for different VMD modules have been discussed. The impact of membrane fouling with its control in VMD is discussed in detail. In this paper, temperature polarization coefficient and concentration polarization coefficient are elaborated in detail. Integration of VMD with other membrane separation processes/industrial processes have been explained to improve the performance of the system and make it more energy efficient. A critical evaluation of the VMD literature is incorporated throughout this review.


2019 ◽  
Author(s):  
Ahmad Bamasag ◽  
Talal Alqahtani ◽  
Shahnawaz Sinha ◽  
Patrick Phelan

Abstract Membrane distillation (MD) has been studied as a promising solution in the desalination industry but it has not been widely accepted or commercialized due to energy and cost concerns. MD is considered as a hybrid method that involves phase-change thermal processes and the use of membrane separation. Unlike conventional pressure-driven membrane methods such as reverse osmosis (RO), MD does not require intensive pre-treatment and can operate at lower pressure with higher salinities; but more importantly, it can utilize low-grade heat sources such as solar energy or waste heat for its operation. In this paper, an innovative MD module to directly employ solar thermal energy to assist in desalination is studied. MD systems that use solar energy as an external heater is investigated experimentally and theoretically. The proposed system, however, integrates hollow-fiber distillation membranes inside evacuated tubes solar collectors. As a result, the temperature is more uniformly distributed, minimizing the effect of temperature polarization, one of the key challenges of MD operation, thus can enhance the MD performance. The technical performance of the system is measured experimentally. The results of the proposed system are compared with a conventional MD process to investigate improvements in water production.


2020 ◽  
Vol 20 (5) ◽  
pp. 1629-1642 ◽  
Author(s):  
Hoi-Fang Tan ◽  
Why-Ling Tan ◽  
N. Hamzah ◽  
M. H. K. Ng ◽  
B. S. Ooi ◽  
...  

Abstract Polyvinylidene fluoride (PVDF) membrane was improved using TiO2 nanoparticles and nanocellulose for membrane distillation crystallization in this work. Besides the addition of TiO2 nanoparticles and nanocellulose, PVDF membrane was post-modified with octadecyltrichlorosilane after phase inversion using a dual coagulation bath. The addition of hydrophilic TiO2 nanoparticles and nanocellulose reduced membrane hydrophobicity, but the dispersed TiO2 nanoparticles assisted silane modification to improve surface hydrophobicity. Besides reducing the agglomeration of TiO2 nanoparticles, nanocellulose induced the formation of larger pore size and higher porosity as proven in SEM images and gravimetric measurement, respectively. The abundant moieties of nanocellulose accelerated the exchange between solvent and non-solvent during phase inversion for the formation of large pore size and porosity, but membrane thickness increased due to the thickening effects. The modified membrane showed higher water permeate flux in membrane distillation with salt rejection greater than 97%. Severe fouling in membrane distillation crystallization was not observed.


Sign in / Sign up

Export Citation Format

Share Document