The Effect of Temperature and Solar Intensity on Performance of Commercial Silicon Solar Cell as Case Study En Nahud Town

Author(s):  
ياسمين أحمد ◽  
مناهل النور ايدام مفضل ◽  
إبراهيم الحاج ◽  
يونس أبو عائشة ◽  
مبارك تقابو

The objective of this research is to study the variation of temperature and solar intensity on the performance of commercial silicon solar cells. This experiment was done at West Kordofan University, Department of Physics. A silicon solar cell was positioned at 450 in the direction of the sun. Then the current-voltage relationship (I-V) was recorded every hour during the day. The results in terms of I-V characteristics demonstrated that the short-circuit current increased linearly with the increase in temperature in the range of (26-33) 0 C, while the open-circuit voltage decreased logarithmically. On the other hand, the fill factor was found to be in the range of 72-78, and the corresponding efficiency was in the range of (6-11%). This result showed that En- Nahud town has a high solar intensity of approximately 1000 W/m2. Therefore, it is found to be a perfect chosen area for providing solar cell investigations and projects in different renewable energy applications.

2021 ◽  
Vol 877 (1) ◽  
pp. 012001
Author(s):  
Marwah S Mahmood ◽  
N K Hassan

Abstract Perovskite solar cells attract the attention because of their unique properties in photovoltaic cells. Numerical simulation to the structure of Perovskite on p-CZTS/p-CH3NH3PbCI3/p-CZTS absorber layers is performed by using a program solar cell capacitance simulator (SCAPS-1D), with changing absorber layer thickness. The effect of thickness p-CZTS/p-CH3NH3PbCI3/p-CZTS, layers at (3.2μm, 1.8 μm, 1.1 μm) respectively are studied. The obtained results are short circuit current density (Jsc ), open circuit voltage (V oc), fill factor (F. F) and power conversion efficiency (PCE) equal to (28 mA/cm2, 0.83 v, 60.58 % and 14.25 %) respectively at 1.1 μm thickness. Our findings revealed that the dependence of current - voltage characteristics on the thickness of the absorbing layers, an increase in the amount of short circuit current density with an increase in the thickness of the absorption layers and thus led to an increase in the conversion efficiency and improvement of the cell by increasing the thickness of the absorption layers.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Sivakumar Parthasarathy ◽  
P. Neelamegam ◽  
P. Thilakan ◽  
N. Tamilselvan

Multicrystalline silicon solar cell and its module with 18 cells connected in series were mounted on an inclined rack tilted 12° South positioned at latitude of 12.0107° and longitude of 79.856°. Corresponding solar irradiance was measured using an optical Pyranometer. Measured irradiance, open circuit voltage (), and short circuit current () values were analyzed. values of both the cell and module were found saturated at above the critical value of illuminations which were different from each other. The integrated daily efficiency for the cell and module were ~10.25% and ~9.39%, respectively, that were less than their respective standard test condition’s value. The reasons for this drop in efficiencies were investigated and reported.


2011 ◽  
Vol 399-401 ◽  
pp. 1477-1480
Author(s):  
Yan Li Xu ◽  
Jin Hua Li

n-ZnO thin films doped In with 2 atm.% were deposited on p-type silicon wafer with textured surface by Ion Beam Enhanced Deposition method, after annealing and prepared front and back electrodes, the n-ZnO/p-Si heterojunction samples were fabricated. The photoelectric property of the sample were measured and compared with silicon solar cell. The result indicated the saturated photocurrent of n-ZnO/p-Si heterojunction was 20% greater than one of the Si solar cell. It means the ZnO/Si heterojunction has a higher ability of produce photoelectron then one of silicon solarcell. The result of the photovoltaic test of n-ZnO/p-Si heterojunction show The open circuit voltage and short-circuit current of the n-ZnO/p-Si heterojunction was 400mV and 5.5mA/cm2 respectively. It was much smaller than the one of silicon solar cells. The reason was discussed


Author(s):  
ANUBHAV GUPTA ◽  
PRAVEEN S ◽  
ABHISHEK KUMAR ◽  
PRIYANKA SHREE ◽  
SUCHANA MISHRA

Organic solar cells using P3HT: PCBM as an active layer on ITO coated glass substrates were fabricated and characterized. Different air annealing procedures and cathode materials were tried and the characteristics were compared with that of a standard thin film polycrystalline silicon solar cell. It was found that the sample prepared with post-deposition air annealing at 130 oC improves the open circuit voltage (Voc) considerably. Besides, short circuit current (Isc) and the efficiency (η) were highest for the sample with a non annealed active layer. Series resistance (Rs) for this sample was lowest, but 103 times higher than that of the silicon solar cell, which in turn may have reduced the efficiency value for the organic cell compared to silicon.


Author(s):  
Sarhan Musa

<p>In this paper, the effect of magnetic field on I-V characteristics of a silicon solar cell of n+pp+ structure is studied in dark and illumination modes. In dark, both the current and the voltage decrease with increasing the magnetic field in forward bias. However in reverse bias, the behavior is different. Under illumination, the effect of magnetic field on I-V characteristics of the silicon solar cell is studied experimentally and simulated using Neural Network Algorithm (NNA). Both short circuit current (I<sub>sc</sub>) and open circuit voltage (V<sub>oc</sub>) are measured under the influence of magnetic field. The solar cell efficiency and the fill factor (FF) are calculated without and with the magnetic field. This performance testing of the solar cell under magnetic field can be considered as one of the non-destructive reliability tools.<strong></strong></p>


2021 ◽  
Vol 13 (2) ◽  
pp. 55
Author(s):  
Asim Ahmed Mohamed Fadol ◽  
Mohammed M. Rashed ◽  
L. M. Abdalgadir ◽  
Essam E. Ali

Experimental results shows that all electrical parameters of solar cell such as maximum output power, open circuit voltage, short circuit current, and fill factor beside efficiency have been changed with temperature. According to results, the most significant is the temperature dependence of the voltage which decreases with increasing temperature while the current of cells slightly increases by temperature. The fill factor and the efficiency decrease upon increasing temperature. This confirms the fact that the voltage decrease is more significant than the current increase.


2021 ◽  
Author(s):  
Khalil Mahmoud ElKhamisy ◽  
Hamdy AbdElhamid ◽  
salah Elagooz ◽  
El-Sayed El-Rabaie

Abstract In this work, the temperature effects on the PV’s electrical and optical parameters of different surface gratings are studied. A 3D simulation is introduced for studying the PV’s electrical parameters such as short circuit current, open circuit voltage and efficiency at different levels of temperature with and without surface’s gratings. We observed that the efficiency is increased for PV of surface grating by about 4.87% compared to the free grating surface’s PV. The efficiency of the PV efficiency is degraded as we increased the temperature above 300K. The solar cell efficiency of gratings free is aggressively degraded compared to the solar cell that includes gratings by about 4.89% at 360K. The electrical parameters such as the open circuit voltage and short circuit current are enhanced compared to the PV of surface grating free. Also, we observed that the triangle grating geometry of dimensions about 10×10 nm produced a higher efficiency compared to the other PV of other grating geometries of same dimensions.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


2020 ◽  
Vol 92 (2) ◽  
pp. 20901
Author(s):  
Abdul Kuddus ◽  
Md. Ferdous Rahman ◽  
Jaker Hossain ◽  
Abu Bakar Md. Ismail

This article presents the role of Bi-layer anti-reflection coating (ARC) of TiO2/ZnO and back surface field (BSF) of V2O5 for improving the photovoltaic performance of Cadmium Sulfide (CdS) and Cadmium Telluride (CdTe) based heterojunction solar cells (HJSCs). The simulation was performed at different concentrations, thickness, defect densities of each active materials and working temperatures to optimize the most excellent structure and working conditions for achieving the highest cell performance using obtained optical and electrical parameters value from the experimental investigation on spin-coated CdS, CdTe, ZnO, TiO2 and V2O5 thin films deposited on the glass substrate. The simulation results reveal that the designed CdS/CdTe based heterojunction cell offers the highest efficiency, η of ∼25% with an enhanced open-circuit voltage, Voc of 0.811 V, short circuit current density, Jsc of 38.51 mA cm−2, fill factor, FF of 80% with bi-layer ARC and BSF. Moreover, it appears that the TiO2/ZnO bi-layer ARC, as well as ETL and V2O5 as BSF, could be highly promising materials of choice for CdS/CdTe based heterojunction solar cell.


Sign in / Sign up

Export Citation Format

Share Document