scholarly journals Magnetic Field Effect on the Electrical Characteristics of a Monocrystalline n+pp+ Silicon Solar Cell

Author(s):  
Sarhan Musa

<p>In this paper, the effect of magnetic field on I-V characteristics of a silicon solar cell of n+pp+ structure is studied in dark and illumination modes. In dark, both the current and the voltage decrease with increasing the magnetic field in forward bias. However in reverse bias, the behavior is different. Under illumination, the effect of magnetic field on I-V characteristics of the silicon solar cell is studied experimentally and simulated using Neural Network Algorithm (NNA). Both short circuit current (I<sub>sc</sub>) and open circuit voltage (V<sub>oc</sub>) are measured under the influence of magnetic field. The solar cell efficiency and the fill factor (FF) are calculated without and with the magnetic field. This performance testing of the solar cell under magnetic field can be considered as one of the non-destructive reliability tools.<strong></strong></p>

Author(s):  
A. D. Péné ◽  
◽  
F. I. Barro ◽  
M. Kamta ◽  
L. Bitjoka ◽  
...  

The aim of this work is to present a study of the recombination velocities at the junction initiating the shortcircuit (Sfsc) and limiting the open circuit (Sfoc) of a silicon solar cell under magnetic field in the static regime. From the continuity equation, the density of minority charge carriers in the base, the photocurrent density, and the phototension are determined. The study of the photocurrent density and the phototension, as a function of the junction recombination velocity, makes it possible to determine the recombination velocities at the junction initiating the short-circuit and limiting the open circuit respectively. From the profile of the variation of the photocurrent density and of the phototension as a function of the junction recombination velocity, a technique for determining the junction recombination velocities initiating the short circuit situation and limiting the open circuit is presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Sivakumar Parthasarathy ◽  
P. Neelamegam ◽  
P. Thilakan ◽  
N. Tamilselvan

Multicrystalline silicon solar cell and its module with 18 cells connected in series were mounted on an inclined rack tilted 12° South positioned at latitude of 12.0107° and longitude of 79.856°. Corresponding solar irradiance was measured using an optical Pyranometer. Measured irradiance, open circuit voltage (), and short circuit current () values were analyzed. values of both the cell and module were found saturated at above the critical value of illuminations which were different from each other. The integrated daily efficiency for the cell and module were ~10.25% and ~9.39%, respectively, that were less than their respective standard test condition’s value. The reasons for this drop in efficiencies were investigated and reported.


2011 ◽  
Vol 399-401 ◽  
pp. 1477-1480
Author(s):  
Yan Li Xu ◽  
Jin Hua Li

n-ZnO thin films doped In with 2 atm.% were deposited on p-type silicon wafer with textured surface by Ion Beam Enhanced Deposition method, after annealing and prepared front and back electrodes, the n-ZnO/p-Si heterojunction samples were fabricated. The photoelectric property of the sample were measured and compared with silicon solar cell. The result indicated the saturated photocurrent of n-ZnO/p-Si heterojunction was 20% greater than one of the Si solar cell. It means the ZnO/Si heterojunction has a higher ability of produce photoelectron then one of silicon solarcell. The result of the photovoltaic test of n-ZnO/p-Si heterojunction show The open circuit voltage and short-circuit current of the n-ZnO/p-Si heterojunction was 400mV and 5.5mA/cm2 respectively. It was much smaller than the one of silicon solar cells. The reason was discussed


Author(s):  
ANUBHAV GUPTA ◽  
PRAVEEN S ◽  
ABHISHEK KUMAR ◽  
PRIYANKA SHREE ◽  
SUCHANA MISHRA

Organic solar cells using P3HT: PCBM as an active layer on ITO coated glass substrates were fabricated and characterized. Different air annealing procedures and cathode materials were tried and the characteristics were compared with that of a standard thin film polycrystalline silicon solar cell. It was found that the sample prepared with post-deposition air annealing at 130 oC improves the open circuit voltage (Voc) considerably. Besides, short circuit current (Isc) and the efficiency (η) were highest for the sample with a non annealed active layer. Series resistance (Rs) for this sample was lowest, but 103 times higher than that of the silicon solar cell, which in turn may have reduced the efficiency value for the organic cell compared to silicon.


Author(s):  
ياسمين أحمد ◽  
مناهل النور ايدام مفضل ◽  
إبراهيم الحاج ◽  
يونس أبو عائشة ◽  
مبارك تقابو

The objective of this research is to study the variation of temperature and solar intensity on the performance of commercial silicon solar cells. This experiment was done at West Kordofan University, Department of Physics. A silicon solar cell was positioned at 450 in the direction of the sun. Then the current-voltage relationship (I-V) was recorded every hour during the day. The results in terms of I-V characteristics demonstrated that the short-circuit current increased linearly with the increase in temperature in the range of (26-33) 0 C, while the open-circuit voltage decreased logarithmically. On the other hand, the fill factor was found to be in the range of 72-78, and the corresponding efficiency was in the range of (6-11%). This result showed that En- Nahud town has a high solar intensity of approximately 1000 W/m2. Therefore, it is found to be a perfect chosen area for providing solar cell investigations and projects in different renewable energy applications.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


2020 ◽  
Vol 92 (2) ◽  
pp. 20901
Author(s):  
Abdul Kuddus ◽  
Md. Ferdous Rahman ◽  
Jaker Hossain ◽  
Abu Bakar Md. Ismail

This article presents the role of Bi-layer anti-reflection coating (ARC) of TiO2/ZnO and back surface field (BSF) of V2O5 for improving the photovoltaic performance of Cadmium Sulfide (CdS) and Cadmium Telluride (CdTe) based heterojunction solar cells (HJSCs). The simulation was performed at different concentrations, thickness, defect densities of each active materials and working temperatures to optimize the most excellent structure and working conditions for achieving the highest cell performance using obtained optical and electrical parameters value from the experimental investigation on spin-coated CdS, CdTe, ZnO, TiO2 and V2O5 thin films deposited on the glass substrate. The simulation results reveal that the designed CdS/CdTe based heterojunction cell offers the highest efficiency, η of ∼25% with an enhanced open-circuit voltage, Voc of 0.811 V, short circuit current density, Jsc of 38.51 mA cm−2, fill factor, FF of 80% with bi-layer ARC and BSF. Moreover, it appears that the TiO2/ZnO bi-layer ARC, as well as ETL and V2O5 as BSF, could be highly promising materials of choice for CdS/CdTe based heterojunction solar cell.


2009 ◽  
Vol 1212 ◽  
Author(s):  
Dewei Zhao ◽  
Xiao Wei Sun ◽  
Lin Ke ◽  
Swee Tiam Tan

AbstractWe present an efficient polymer-small molecule triple-tandem organic solar cell (OSC), consisting of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM) bulk heterojunction as the first and second cells, and small molecules copper phthalocyanine (CuPc) and fullerene (C60) as the third cell on top. These sub-cells are connected by an intermediate layer of Al(1 nm)/MoO3(15 nm), which appears to be highly transparent, structurally smooth, and electrically functional. Compared to our previous all polymer triple-tandem organic solar cells (2.03%), this polymer-small molecule triple-tandem organic solar cell achieves an improved power conversion efficiency of 2.18% with a short-circuit current density (Jsc) = 3.02 mA/cm2, open-circuit voltage (Voc) = 1.51 V, and fill factor (FF) = 47.7% under simulated solar irradiation of 100 mW/cm2 (AM1.5G), which can be attributed to the increased photocurrent generation in the third cell since the third cell has the complementary absorption with two bottom cells despite a slightly reduced Voc.


2013 ◽  
Vol 665 ◽  
pp. 330-335 ◽  
Author(s):  
Ripal Parmar ◽  
Dipak Sahay ◽  
R.J. Pathak ◽  
R.K. Shah

The solar cells have been used as most promising device to convert light energy into electrical energy. In this paper authors have attempted to fabricate Photoelectrochemical solar cell with semiconductor electrode using TMDCs. The Photoelectrochemical solar cells are the solar cells which convert the solar energy into electrical energy. The photoelectrochemical cells are clean and inexhaustible sources of energy. The photoelectrochemical solar cells are fabricated using WSe2crystal and electrolyte solution of 0.025M I2, 0.5M NaI, 0.5M Na2SO4. Here the WSe2crystals were grown by direct vapour transport technique. In our investigations the solar cell parameters like short circuit current (Isc) and Open circuit voltage (Voc) were measured and from that Fill factor (F.F.) and photoconversion efficiency (η) are investigated. The results obtained shows that the value of efficiency and fill factor of solar cell varies with the illumination intensities.


Sign in / Sign up

Export Citation Format

Share Document