scholarly journals Usefulness of Liquid Biopsy for Intraocular Malignancies

2022 ◽  
pp. 1-6

Retinoblastoma (RB) is the most common primary intraocular malignancy in children, whereas Uveal melanoma (UM) is the most common intraocular malignancy in adults [1,2]. Tissue biopsy is the standard gold technique for diagnosing the malignant neoplasm but an incisional tissue biopsy or fine needle aspiration biopsy (FNAB) is contraindicated for the intraocular malignancy [3]. Clinical diagnosis and imaging study are the only way to diagnose the intraocular malignancy due to the risk and fear of extraocular spread [4]. Recently, liquid biopsy has gained in popularity in the ophthalmic field. Liquid biopsy allows retinoblastoma diagnosis and a better understanding of the metastatic spread of uveal melanoma. Recently, the USA Food and Drug Administration (FDA) approved the make use of liquid biopsy (LB) as an appropriate diagnosis, prognosis, and also for monitoring tool in non-small cell lung carcinoma to keep away from invasive tissue biopsy in designated cases [5-7]. Liquid biopsy (LB) utilizes biofluid to evaluate for tumor-derived cells or cell-free DNA. LB is a relatively non-invasive technique rather than a tissue biopsy. In LB, material collected from multiple body fluids such as aqueous humor (AH), blood, cerebrospinal fluid, urine, and saliva for molecular diagnosis [8] and detecting of cancer biomarkers such as circulating tumor cells (CTC), tumor derived cell free DNA (ct-DNA), circulating tumor RNA (ct-RNA), microRNA (miRNA), tumorrelated exosomes (TREs), and extracellular vescicles (EVs) [7]. Aqueous humor samples for RB (Ocular LB) and Venous blood samples for UM (systemic LB) are utilizing for analyzing the molecular characteristics [8]. In others ophthalmic malignancies like conjunctival melanoma or squamous cell carcinoma, the role of LB is still not studied because tissue biopsy is routinely done for confirming the diagnosis and also for mutational status [9-11].

Author(s):  
Suman Kumar Ray ◽  
Sukhes Mukherjee

: Cell-free DNA (cfDNA) is present in numerous body fluids in addition to initiates generally from blood cells. It is undoubtedly the utmost promising tool among all components of liquid biopsy. Liquid biopsy is a specialized method investigating the nonsolid biological tissue by revealing of circulating cells, cell free DNA etc. that enter body fluids. Since, cancer cells disengage from compact tumors circulate in peripheral blood, evaluating blood of cancer patients holds the opportunities for capture and molecular level analysis of various tumor-derived constituents. Cell free DNA samples can deliver a significant perceptions into oncology, for instance tumor heterogeneity, instantaneous tumor development, response to therapy and treatment, comprising immunotherapy and mechanisms of cancer metastasis. Malignant growth at any phase can outhouse tumor cells in addition to fragments of neoplasticity causing DNA into circulatory system giving noble sign of mutation in the tumor at sampling time. Liquid biopsy distinguishes diverse blood based evolving biomarkers comprising circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or cfDNA, circulating RNA (cfRNA) and exosomes. Cell free DNA are little DNA fragments found circulating in plasma or serum, just as other fluids present in our body. Cell free DNA involves primarily double stranded nuclear DNA and mitochondrial DNA, present both on a surface level and in the lumen of vesicles. The probable origins of the tumor-inferred portion of cfDNA are apoptosis or tumor necrosis, lysis of CTCs or release of DNA from the tumor cells into circulation. The evolution of innovations, refinement and improvement in therapeutics for determination of cfDNA fragment size and its distribution provide significant information related with pathological conditions of the cell, thus emerging as promising indicator for clinical output in medical biotechnology.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3923
Author(s):  
Daniel Di Capua ◽  
Dara Bracken-Clarke ◽  
Karine Ronan ◽  
Anne-Marie Baird ◽  
Stephen Finn

Lung cancer is a leading cause of cancer-related deaths, contributing to 18.4% of cancer deaths globally. Treatment of non-small cell lung carcinoma has seen rapid progression with targeted therapies tailored to specific genetic drivers. However, identifying genetic alterations can be difficult due to lack of tissue, inaccessible tumors and the risk of complications for the patient with serial tissue sampling. The liquid biopsy provides a minimally invasive method which can obtain circulating biomarkers shed from the tumor and could be a safer alternative to tissue biopsy. While tissue biopsy remains the gold standard, liquid biopsies could be very beneficial where serial sampling is required, such as monitoring disease progression or development of resistance mutations to current targeted therapies. Liquid biopsies also have a potential role in identifying patients at risk of relapse post treatment and as a component of future lung cancer screening protocols. Rapid developments have led to multiple platforms for isolating circulating tumor cells (CTCs) and detecting circulating tumor DNA (ctDNA); however, standardization is lacking, especially in lung carcinoma. Additionally, clonal hematopoiesis of uncertain clinical significance must be taken into consideration in genetic sequencing, as it introduces the potential for false positives. Various biomarkers have been investigated in liquid biopsies; however, in this review, we will concentrate on the current use of ctDNA and CTCs, focusing on the clinical relevance, current and possible future applications and limitations of each.


2021 ◽  
Vol 67 (4) ◽  
pp. 576-578
Author(s):  
Margaritis Avgeris ◽  
Antonios Marmarinos ◽  
Dimitrios Gourgiotis ◽  
Andreas Scorilas
Keyword(s):  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Zimeng Ye ◽  
Zac Chatterton ◽  
Jahnvi Pflueger ◽  
John A Damiano ◽  
Lara McQuillan ◽  
...  

Abstract Brain somatic mutations are an increasingly recognized cause of epilepsy, brain malformations and autism spectrum disorders and may be a hidden cause of other neurodevelopmental and neurodegenerative disorders. At present, brain mosaicism can be detected only in the rare situations of autopsy or brain biopsy. Liquid biopsy using cell-free DNA derived from cerebrospinal fluid has detected somatic mutations in malignant brain tumours. Here, we asked if cerebrospinal fluid liquid biopsy can be used to detect somatic mosaicism in non-malignant brain diseases. First, we reliably quantified cerebrospinal fluid cell-free DNA in 28 patients with focal epilepsy and 28 controls using droplet digital PCR. Then, in three patients we identified somatic mutations in cerebrospinal fluid: in one patient with subcortical band heterotopia the LIS1 p. Lys64* variant at 9.4% frequency; in a second patient with focal cortical dysplasia the TSC1 p. Phe581His*6 variant at 7.8% frequency; and in a third patient with ganglioglioma the BRAF p. Val600Glu variant at 3.2% frequency. To determine if cerebrospinal fluid cell-free DNA was brain-derived, whole-genome bisulphite sequencing was performed and brain-specific DNA methylation patterns were found to be significantly enriched (P = 0.03). Our proof of principle study shows that cerebrospinal fluid liquid biopsy is valuable in investigating mosaic neurological disorders where brain tissue is unavailable.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeremy W. Roy ◽  
Catherine A. Taylor ◽  
Annie P. Beauregard ◽  
Surendar R. Dhadi ◽  
D. Craig Ayre ◽  
...  

AbstractExtracellular vesicles (EVs) have been recognized as a rich material for the analysis of DNA, RNA, and protein biomarkers. A remaining challenge for the deployment of EV-based diagnostic and prognostic assays in liquid biopsy testing is the development of an EV isolation method that is amenable to a clinical diagnostic lab setting and is compatible with multiple types of biomarker analyses. We have previously designed a synthetic peptide, known as Vn96 (ME kit), which efficiently isolates EVs from multiple biofluids in a short timeframe without the use of specialized lab equipment. Moreover, it has recently been shown that Vn96 also facilitates the co-isolation of cell-free DNA (cfDNA) along with EVs. Herein we describe an optimized method for Vn96 affinity-based EV and cfDNA isolation from plasma samples and have developed a multiparametric extraction protocol for the sequential isolation of DNA, RNA, and protein from the same plasma EV and cfDNA sample. We are able to isolate sufficient material by the multiparametric extraction protocol for use in downstream analyses, including ddPCR (DNA) and ‘omic profiling by both small RNA sequencing (RNA) and mass spectrometry (protein), from a minimum volume (4 mL) of plasma. This multiparametric extraction protocol should improve the ability to analyse multiple biomarker materials (DNA, RNA and protein) from the same limited starting material, which may improve the sensitivity and specificity of liquid biopsy tests that exploit EV-based and cfDNA biomarkers for disease detection and monitoring.


Author(s):  
Huiyan Luo ◽  
Wei Wei ◽  
Ziyi Ye ◽  
Jiabo Zheng ◽  
Rui-hua Xu
Keyword(s):  

2020 ◽  
Vol 21 (23) ◽  
pp. 9083
Author(s):  
Catherine Taylor ◽  
Simi Chacko ◽  
Michelle Davey ◽  
Jacynthe Lacroix ◽  
Alexander MacPherson ◽  
...  

Liquid biopsy is a minimally-invasive diagnostic method that may improve access to molecular profiling for non-small cell lung cancer (NSCLC) patients. Although cell-free DNA (cf-DNA) isolation from plasma is the standard liquid biopsy method for detecting DNA mutations in cancer patients, the sensitivity can be highly variable. Vn96 is a peptide with an affinity for both extracellular vesicles (EVs) and circulating cf-DNA. In this study, we evaluated whether peptide-affinity (PA) precipitation of EVs and cf-DNA from NSCLC patient plasma improves the sensitivity of single nucleotide variants (SNVs) detection and compared observed SNVs with those reported in the matched tissue biopsy. NSCLC patient plasma was subjected to either PA precipitation or cell-free methods and total nucleic acid (TNA) was extracted; SNVs were then detected by next-generation sequencing (NGS). PA led to increased recovery of DNA as well as an improvement in NGS sequencing parameters when compared to cf-TNA. Reduced concordance with tissue was observed in PA-TNA (62%) compared to cf-TNA (81%), mainly due to identification of SNVs in PA-TNA that were not observed in tissue. EGFR mutations were detected in PA-TNA with 83% sensitivity and 100% specificity. In conclusion, PA-TNA may improve the detection limits of low-abundance alleles using NGS.


Sign in / Sign up

Export Citation Format

Share Document