scholarly journals Experimental investigation and Analysis on effect of fiber orientation on mechanical properties of synthetic and natural fiber reinforced hybrid composite

Author(s):  
Pradeep Devaenthiran ◽  
◽  
Kumar Murugesan ◽  
Sangaravadivel Palaniappan ◽  
◽  
...  

Automobile bumper is an essential component that is commonly used to absorb the impact load during vehicle collisions, in fact it saves lives at such occurrences.In order to withstand the impact load, and the bumper deforms itself during collision and protects the passengers by havingthe proper cross section and the material selection. In this way, the study explores the mechanical characterization of fabricated composite and its structural analysis. Impact conditions have to be studied for improving the mechanical properties of the bumper during collision. The material chosen for analysis is jute and Glass fiber reinforced hybrid epoxy composite, considering its light weight and strength characteristics. Composites with two different fibre orientations (45°/90°) are fabricated using Hydraulic Compression Moulding technique. From experimental observations of jute and glass fiber reinforced hybrid composites, the orientation has significant effect on the structural and mechanical properties. The results are validated using the simulation of a bumper by impact modelling using CATIA software and impact analysis is carried out using ANSYS.

2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


2019 ◽  
Vol 61 (11) ◽  
pp. 1095-1100 ◽  
Author(s):  
Sivakumar Dhar Malingam ◽  
Kathiravan Subramaniam ◽  
Ng Lin Feng ◽  
Siti Hajar Sheikh MD Fadzullah ◽  
Sivaraos Subramonian

2008 ◽  
Vol 47-50 ◽  
pp. 486-489 ◽  
Author(s):  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn ◽  
Jongrak Kluengsamrong

Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, biodegradability. However, some limitations e.g. low modulus, poor moisture resistance were reported. The mechanical properties of natural fiber reinforced composites can be improved by hybridization with synthetic fibers such as glass fiber. In this research, mechanical properties of short sisal-PP composites and short sisal/glass fiber hybrid composites were studied. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Effect of weight ratio of sisal and glass fiber at 30 % by weight on the mechanical properties of the composites was investigated. Morphology of fracture surface of each composite was also observed.


Author(s):  
Govind Pathak ◽  
Om Prakash Dubey ◽  
Prafful Kumar Manoharan

The natural fiber-reinforced polymer composite is swiftly growing both in phrases of their industrial applications and fundamental research. They are renewable, cheap, absolutely or in part recyclable and biodegradable. The incorporation of herbal fibers consisting of sisal with glass fiber hybrid composites has additionally received growing industrial packages. Herbal and synthetic fibers are mixed in the same matrix (unsaturated polyester) to make sisal/glass fiber hybrid composites and the mechanical residences of those hybrid composites had been studied. A giant development in mechanical homes of sisal/glass fiber hybrid composites has been observed. the chalk powder (additive) is likewise introduced to the resin (unsaturated polyester) in proportions of 1%, 2%, 3% by way of weight of resin respectively and sisal/glass fiber hybrid composites were organized through the usage of this resin to take a look at the effect of chalk powder on mechanical homes of those hybrid composites. It is also found that because the chalk powder quantity increases tensile and flexural residences are decreases.


2014 ◽  
Vol 592-594 ◽  
pp. 92-96 ◽  
Author(s):  
V. Muthukumar ◽  
R. Venkatasamy ◽  
V. Mariselvam ◽  
A. Sureshbabu ◽  
N. Senthilkumar ◽  
...  

The aim of present experimental investigation is to compare the mechanical properties of Sisal, jute and kenaf fiber reinforced with glass fiber in polyester matrix hybrid composites. Hybrid composites were fabricated by hand lay-up technique. The tensile, flexural and impact tests were carried out on different composite samples as per the ASTM standards. It was observed that the tensile strength of jute/glass fiber composite is 1.94 and 1.59 times more than that of sisal/glass and kenaf/glass composites, respectively. The flexural load carrying capacity of sisal/glass composite is 3.4 and 2.83 times greater than those of jute/glass and kenaf/glass composites, respectively. Also, it can be seen that impact strength of jute/glass composite is almost equal to that of kenaf/glass composite and 1.13 times more than that of sisal/glass composite.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
S. Ragunath ◽  
A. N. Shankar ◽  
K. Meena ◽  
B. Guruprasad ◽  
S. Madhu ◽  
...  

The aim of this research work was to develop the optimal mechanical properties, namely, tensile strength, flexural strength, and impact strength of sisal and glass fiber-reinforced polymer hybrid composites. The sisal, in the form of short fiber, is randomly used as reinforcements for composite materials, which is rich in cellulose, economical, and easily available as well as glass fibers have low cost and have good mechanical properties. In addition, epoxy resin and hardener were for the fabrication of composites by compression molding. The selected materials are fabricated by compression molding in various concentrations on volume basics. The combination of material compositions is obtained from the design of experiments and optimum parameters determined by the Response Surface Methodology (RSM). From the investigation of mechanical properties, the sisal is the most significant factor and verified by ANOVA techniques. The multiobjective optimal levels of factors are obtained by LINGO analysis.


Author(s):  
Sandhyarani Biswas ◽  
Prity Aniva Xess

Now-a-days, there is an increasing interest in hybrid composites made by combination of two or more different types of fiber in a common matrix because these materials offer a range of properties that cannot be attained with a single type of reinforcement. The fibres are either natural or synthetic and both types of fiber have advantages and disadvantages. Therefore, in this work a new class of hybrid composite reinforced with a synthetic fiber and a natural fiber is developed to get the advantage of both the fibres in terms of superior tribological properties and economy. The present research work is undertaken to investigate the erosion behaviour of short bamboo and glass fiber reinforced epoxy based hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document