scholarly journals Assessment of groundwater quality of two selected villages of Nawada district of Bihar using water quality index

2021 ◽  
Vol 22 (3) ◽  
pp. 387-394
Author(s):  
Mukesh Ruhela ◽  
Vikas Kumar Singh ◽  
Faheem Ahamad

Unplanned discarding of industrial effluent, sewage, domestic and industrial solid waste, unwise use of insecticides, herbicides, pesticides, and fertilizer in agriculture are the major causes of groundwater quality reduction. In the present paper groundwater quality of the two selected village of Rajauli subdivision of Nawada district of Bihar was assessed using water quality index (WQI). The samples were figured out for the parameters such as temperature, pH, electrical conductivity (EC), total dissolved solids (TDS), alkalinity, dissolved oxygen (DO), total hardness (TH), chloride, calcium (Ca), magnesium (Mg), biochemical oxygen demand (BOD), and fluoride. All the parameters were found below the standard limits of Bureau of Indian Standard (BIS, 2012) except total hardness (328.1mg/l to 346.6mg/l), calcium (105.3mg/l to 122.6mg/l), magnesium (46.1mg/l to 55.7mg/l) and fluoride (4.8 to 4.9mg/l). Fluoride was observed more than 3 times than the standard permissible limit (1.5mg/l). Water quality index (WQI) was also applied on the obtained data to make it easy to understand. Based on WQI (including the fluoride), all the four sites fall in unfit for drinking category (250.79, 258.78, 281.78, 247.30) and in poor to very poor category (80.23, 88.19, 88.59, 64.60) excluding the fluoride from WQI calculation. Both the values of WQI shows that fluoride alone is not responsible for the degraded quality of water but other high concentration of salts is also responsible.

2017 ◽  
Vol 5 (1) ◽  
pp. 1 ◽  
Author(s):  
Kailash Aher ◽  
Sharad Gaikwad

To identify the sources and quality of groundwater, the water samples were collected from 52 dug wells irrigation water in an area of 1089.82km2 and were analyses for pH, Conductivity, total dissolved solids, Calcium, Magnesium, Sodium, potassium, total hardness, Alkalinity (CO32−, HCO3−), sulphate, chloride, nitrate and fluoride to understand the (irrigation water quality index ) IWQI, The         secondary parameters of irrigation groundwater quality indices such as Sodium adsorption ratio (SAR), Residual sodium carbonate (RSC), Kelley’s ratio (KR), Sodium soluble percent (SSP), Permeability index (PI),Magnesium adsorption ratio (MAR),and CRI       (Corrosively ratio index) were calculated from the primary parameter for irrigation water quality index (IWQI). The IWQI was classified into excellent to unfit condition of groundwater quality based on their Water Quality Index (WQI). The IWQI (88%+12%) indicate that slightly unsustainable to good quality of ground water. But due to this quality deterioration of shallow aquifer, an immediate attestation requires for sustainable development.


2019 ◽  
Vol 2 (2) ◽  
pp. 83-90 ◽  
Author(s):  
Smitarani Lad ◽  
Swati Mukherjee ◽  
Bhavana Umrikar

The emulsification of major constituents in groundwater is accentuated to highlight the impact that is anticipated to be the prime concern due to depleting quality of this resource used for drinking purpose. In view of this, 53 groundwater samples of dug wells taping basaltic water table aquifer located in Haveli taluka adjoining Pune city of Maharashtra, India were collected and analyzed for major cations and anions to evaluate the suitability using water quality index (WQI). The parameters such as pH, Total Hardness (TH), Sodium (Na) and Sulphate (SO4) were assigned with weight 5 and the weight 1 considered as lowest level was assigned to Calcium (Ca++), Magnesium (Mg++), Potassium (K+), Carbonate (CO3--), Bicarbonate (HCO3-) and Phosphate (PO4) and observations were made to know the groundwater quality of the study area. Using these values, the WQI was calculated that revealed according to BIS standards 57% of samples falls in good category, and 43% samples in poor category, while according to WHO standards 38%, 57%, 6% were representing excellent, good and poor category, respectively.


2020 ◽  
Vol 10 (11) ◽  
Author(s):  
Asif Mahmud ◽  
Shraboni Sikder ◽  
Jagadish Chandra Joardar

Abstract Valuation of water quality index (WQI) is one of the simplest, easily understandable, and efficacious techniques to evaluate the quality and suitability of water for drinking as well as other purposes. This research was aimed to investigate the drinking water quality of tube wells from different areas in Khulna City, Bangladesh, by developing the WQI. Water samples from 59 tube wells were collected from different locations during the pre-monsoon time. pH, electric conductivity (EC), dissolve oxygen (DO), total dissolved solid (TDS), chloride (Cl−), nitrate (NO3−), and total hardness of the collected water samples were analyzed for the calculation of WQI. The mean value for pH, EC, DO, TDS, Cl−1, NO3−, and total hardness was 7.30, 1650 μS/cm, 1.60 mg/l, 1188.7 mg/l, 414.6 mg/l, 0.029 mg/l, and 52.03 mg/l, respectively. The calculated WQI values for individual places were distributed spatially through mapping by using ArcGIS software. Based on the WQI values, the drinking water was categorized into excellent, good, poor, very poor, and unfit for drinking purposes. The calculated WQI values ranged from 40.11 to 454.37 with an average value of 108.94. Among all the groundwater samples, 11.86% were excellent, 54.24% were good, 23.73% were poor, 1.69% were very poor, and 8.47% were unfit for drinking purpose based on WQI. The results showed that the groundwater quality of most of the studied areas of Khulna city could be considered safe and suitable for drinking barring the elevated EC and chloride content in some areas. Since Khulna city is situated in the southwestern part of Bangladesh and gradually approaches toward the base level of the Bay of Bengal which might be the source of salt concentration in the groundwater of Khulna city, Bangladesh.


Author(s):  
S.K. Pathak ◽  
Shambhu Prasad ◽  
Tanmay Pathak

The present paper was intended to calculate water quality index (WQI) of river Bhagirathi. It is one of the tributary of holy river Ganga of India. In order to determine the quality of its water for public use, recreation and other purposes , the eleven parameters like pH, electric conductivity, Total dissolve solids, Total suspended solids, Dissolve oxygen , Biological oxygen demand, Total alkalinity, Total hardness, Chloride, Nitrate and Sulphate were determine. The water quality index calculated from the observed parameters indicate the river Bhagirathi at  Uttarakhand during winter was under good water quality condition, while at summer and rainy season of showed poor water quality index. In terms of index number ,offers a useful representation of overall quality of water for public or for any intended use as well as in the pollution mitigate plan and in water quality management.


2015 ◽  
Vol 3 (2) ◽  
pp. 38 ◽  
Author(s):  
Shashi Kant ◽  
Y.V. Singh ◽  
Lokesh Kumar Jat ◽  
R. Meena ◽  
S.N. Singh

<p>In sustainable groundwater study, it is necessary to assess the quality of groundwater in terms of irrigation purposes. The present study attempts to assess the groundwater quality through Irrigation Water Quality Index (IWQI) in hard-rock aquifer system and sustainable water use in Lahar block, Bhind of district, Madhya Pradesh, India. The quality of ground water in major part of the study area is generally good. In order to understand the shallow groundwater quality, the water samples were collected from 40 tube wells irrigation water. The primary physical and chemical parameters like potential Hydrogen (pH), Total Dissolved Solids (TDS), calcium (Ca<sup>2+</sup>), magnesium (Mg<sup>2+</sup>), sodium (Na<sup>+</sup>), potassium (K<sup>+</sup>), bicarbonate (HCO<sub>3</sub><sup>-</sup>), carbonate (CO<sub>3</sub><sup>2-</sup>), chloride (Cl<sup>-</sup>), and nitrate (NO<sub>3</sub><sup>-</sup>) were analyzed for (irrigation water quality index ) IWQI. The secondary parameters of irrigation groundwater quality indices such as Sodium Adsorption Ratio (SAR), Sodium Soluble Percentage (SSP), Residual Sodium Carbonate (RSC), Permeability Index (PI), and Kellies Ratio (KR) were also derived from the primary parameter for irrigation water quality index (IWQI). The IWQI was classified into excellent to unfit condition of groundwater quality based on their Water Quality Index (WQI). The IWQI (82.5%+15.0%) indicate that slightly unsustainable to good quality of ground water. Due to this quality deterioration of shallow aquifer, an immediate attestation requires for sustainable development.</p>


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Arjun Ram ◽  
S. K. Tiwari ◽  
H. K. Pandey ◽  
Abhishek Kumar Chaurasia ◽  
Supriya Singh ◽  
...  

AbstractGroundwater is an important source for drinking water supply in hard rock terrain of Bundelkhand massif particularly in District Mahoba, Uttar Pradesh, India. An attempt has been made in this work to understand the suitability of groundwater for human consumption. The parameters like pH, electrical conductivity, total dissolved solids, alkalinity, total hardness, calcium, magnesium, sodium, potassium, bicarbonate, sulfate, chloride, fluoride, nitrate, copper, manganese, silver, zinc, iron and nickel were analysed to estimate the groundwater quality. The water quality index (WQI) has been applied to categorize the water quality viz: excellent, good, poor, etc. which is quite useful to infer the quality of water to the people and policy makers in the concerned area. The WQI in the study area ranges from 4.75 to 115.93. The overall WQI in the study area indicates that the groundwater is safe and potable except few localized pockets in Charkhari and Jaitpur Blocks. The Hill-Piper Trilinear diagram reveals that the groundwater of the study area falls under Na+-Cl−, mixed Ca2+-Mg2+-Cl− and Ca2+-$${\text{HCO}}_{3}^{ - }$$ HCO 3 - types. The granite-gneiss contains orthoclase feldspar and biotite minerals which after weathering yields bicarbonate and chloride rich groundwater. The correlation matrix has been created and analysed to observe their significant impetus on the assessment of groundwater quality. The current study suggests that the groundwater of the area under deteriorated water quality needs treatment before consumption and also to be protected from the perils of geogenic/anthropogenic contamination.


2013 ◽  
Vol 295-298 ◽  
pp. 755-758 ◽  
Author(s):  
Ya Yun Liu ◽  
Zhi Hong Li ◽  
Xiao Jian Liang ◽  
Yan Peng Lin ◽  
Rong Hao Wu ◽  
...  

Based on the water quality investigation data of December in 2010, the water environment quality of Lv-tang River in Zhanjiang national urban wetland park was assessed using single water quality parameter model and integrated water quality index model. The results show that the water quality of Lv-tang River is worse than the national quality standards for Grade V. The water is polluted seriously. The main pollutants are total nitrogen (TN), ammonia nitrogen (NH3-N) and chemical oxygen demand CODCr with their average concentrations of 60.49 mg/L, 30.57 mg/L and 227.38mg/L, respectively. The averages of their single parameter pollution index are 30.25 , 19.79 and 8.74. The average of single parameter pollution index of the river is 8.23 which indicated that the river belongs to heavy pollution zone. The integrated water quality index was 22.5 showing that the river belongs to serious pollution zone.


2020 ◽  
Vol 53 (2C) ◽  
pp. 87-104
Author(s):  
Kaiwan Fatah

Studying groundwater quality in arid and semi-arid regions is essential significant because it is used as a foremost alternative source for various purposes (human and animal consumption, economic, agriculture and irrigation). Geographic Information System and Water Quality Index techniques were utilized for visualizing and evaluating the variations of groundwater quality in the studied area. Total twelve wells were sampled and twelve groundwater quality (chemical) parameters; pH, Total Alkalinity, Total Hardness (TH), Total Dissolved Solid (TDS), Electrical Conductivity (Ec), Potassium (K), Nitrate (NO3), Sulfate (SO4), Chloride (Cl), Calcium (Ca), Magnesium (Mg) and Sodium (Na) were analyzed in the laboratory. Inverse Distance Weighted technique was used as a useful tool to create and anticipate spatial variation maps of the chemical parameters. Predicting or anticipating other areas not measured, identifying them and making use of them in the future without examining samples. The results of this research showed that 8.3% of the studied wells have excellent groundwater quality, and almost sampling wells about 75% found in good groundwater quality, while findings of groundwater quality of 16.7% studied wells belong to poor water quality due to standards of Water Quality Index. Moreover, spatial analysis in term of groundwater quality map showed that Excellent groundwater quality was detected in well 3, very good groundwater potential was noticed in six studied wells (wells 2, 6, 8, 10, 11 and 12), and other sampling wells (wells 4 and 7) were observed as good groundwater quality, while poor water quality was observed in wells (well 1 and 5). Hence, spatial distribution maps showed that the almost groundwater quality in the area about 1046.82 km² (99.04%) are suitable for drinking purpose, whereas proximate 10.18 km² (0.96%) are observed as poor water quality and inappropriate for consumptions especially in the southern part of the area.


2018 ◽  
Vol 3 (2) ◽  
pp. 121-130
Author(s):  
Isabella Robert Rodrigues ◽  
Mauro César Geraldes ◽  
Andréa Alves Ferreira ◽  
Marcelo Dos Santos Salomão ◽  
Sérgio Vieira Anversa

In Brazil, about 49% of the population does not have access to the sewage collection network, with the consequent direct discharge of their sewage network into water bodies. Due to this scenario, it is essential to investigate the quality of the water consumed by thousands of people along the Negro and Resende Rivers. The present study analysis the waters of the Negro and Resende rivers, located in Dois Rios River Basin, in the municipality of Duas Barras, Rio de Janeiro State (RJ, SE Brazil), based on the Water Quality Index proposed by the National Sanitation Foundation (United States). The population of the district located in the municipality of Duas Barras dumps the domestic sewage directly into the hydrographic network. The analyzed parameters were: turbidity, total solid residue, total phosphorus, total nitrogen, biochemical oxygen demand (BOD), hydrogenation potential, temperature, dissolved oxygen and thermotolerant coliforms. The values obtained from the calculation of the Water Quality Index (WQI) showed a variation from 40 to 68, meaning that the quality of water vary between bad and acceptable in the study area. The samples collected in the urban area contained values for thermotolerant coliforms in disagreement with the maximum value permissible for classes 2 and 3 of fresh water by CONAMA (Conselho Nacional do Meio Ambiente; a Brazilian Council for the Environment) Resolution 357/2005. The results of the analyzes confirmed the contamination of the two rivers by the discharge of domestic effluents, showing that actions are necessary to eliminate or minimize the discharge of sewage in the surveyed water bodies, since it may cause public health risks. ResumoNo Brasil, cerca de 49% da população não possui acesso à rede de coleta de esgoto, com o consequente despejo direto da sua rede de esgotos em corpos hídricos. Diante deste cenário, torna-se indispensável investigar a qualidade da água consumida por milhares de pessoas ao longo dos rios Negro e Resende. A presente pesquisa analisou qualitativamente as águas dos rios Negro e Resende, localizados na Bacia Hidrográfica do Rio Dois Rios, no município de Duas Barras/RJ, a partir do índice de qualidade das águas proposto pela National Sanitation Foundation. A população do distrito sede do município de Duas Barras despeja o esgoto doméstico diretamente na referida rede hidrográfica. Os parâmetros analisados foram: turbidez, resíduo sólido total, fósforo total, nitrogênio total, demanda bioquímica de oxigênio, potencial hidrogêniônico, temperatura, oxigênio dissolvido e coliformes termotolerantes. Os valores obtidos no cálculo do índice de qualidade das águas (IQA) mostraram uma variação de 40 a 68, significando uma qualidade da água entre ruim e razoável. As amostras coletadas na área urbana apresentaram valores para coliformes termotolerantes em desacordo com o valor máximo permitido para classes 2 e 3 de água doce, regulamentados pela Resolução CONAMA 357/2005. O resultado das análises confirmou a contaminação dos dois rios pelo lançamento de efluentes domésticos, os quais poderão originar riscos de saúde pública. Os resultado evidenciam a necessidade de se desenvolverem ações para eliminar ou minimizar os despejos de esgotos nos referidos corpos hídricos.


2010 ◽  
Vol 3 (1) ◽  
pp. 151 ◽  
Author(s):  
S. Islam ◽  
T. Rasul ◽  
J. Bin Alam ◽  
M. A. Haque

The Titas River, a trans-boundary river of Bangladesh flows almost the entire Brahmanbaria district, consumes a huge amount of sewage, agricultural discharges and runoff, waste produced from human excreta, discharges of two oil mills and contaminants from other minor sources. A study is conducted to find the water quality status of the river during the period from July 2008 to June 2009 and by using National Sanitation Foundation (NSF) water quality index, the probable use of this water is predicted. This work consists of laboratory tests for the evaluation of some water quality parameters of the Titas and to identify its probable use in various purposes. The results of the laboratory tests and NSF water quality index suggest that the water can be used for recreation, pisciculture and irrigation purposes but requires treatment before using for drinking.Keywords: Water pollution; Faecal coliform; Dissolved oxygen (DO); Biochemical oxygen demand (BOD).© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i1.6170                 J. Sci. Res. 3 (1), 151-159 (2011)


Sign in / Sign up

Export Citation Format

Share Document