scholarly journals Adsorption Equilibrium, Physicochemical Parameters and Colour Deactivation Effects of Activated Carbon for Dye for Waste Water Treatment

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Alhassan M

Effluents from dye and dyeing industries constitute serious environmental threat and attracting serious attention. Activated carbon prepared from guinea corn husk and maize cobs waste materials was used as a precursor to prepare activated carbon. Variable ratios of the constituent ashes ( 1:1, 1:3 and 3:1) were prepared. The husk and cobs were ashed in a murfle furnace at 400-500oc for 2.5 h. Acid activation was carried out   by washing with HCl (1M) after which it was characterized using XRF which revealed (in variable proportions) the presence of SiO2, Al2O3 and Fe2O3 as dominant oxides in the ashes. Waste water decolourization efficiency of the adsorbents was tested using dye waste water at same contact time using variable absorbent dosage. Higher moisture (96.80±0.56), Ash (12.90±0.35), pH (6.3±0.17), Conductivity (208±1.34) and Bulk density (12.27±0.61) were obtained for guinea corn husk. The best clearity was obtained after batch adsorption experiments at 1:1 which gave the highest adsorption at equilibrium (Qe) of 28.55 compared to 12.750 and 10.900 obtained for 1;3 and 3:1 respectively.

2015 ◽  
Vol 2 (2) ◽  
Author(s):  
Wahyu Wilopo ◽  
Septiawan Nur Haryono ◽  
Doni Prakasa Eka Putra ◽  
I Wayan Warmada ◽  
Tsuyoshi Hirajima

Development of indusrialization and urbanization not only increase economic growth but also contribute to the environmental degradation, especially contamination of heavy metals in water. In other side, there are many geological materials have capability to immobilize heavy metals. Therefore, the objective of this research is to know the maximum capacity of natural zeolite from Trembono area, Gunung Kidul regency to immobilize copper (Cu2+) from water and to understand their mechanism. This experiment was carry out by a batch test. The result showed that the maximum capacity of zeolite to immobilize Cu (qmax) is 63,69 mmolCu/kg Zeolite according to Langmuir adsorption equilibrium model. In addition, the capability to immobilize Cu will increases due to decreasing the grain size. The result of this research can be used as an alternative for waste water treatment, especially Cu. Keywords: Removal, copper (Cu2+), natural zeolite, Langmuir isotherm


2012 ◽  
Vol 60 (2) ◽  
pp. 185-189 ◽  
Author(s):  
Mohammad Arifur Rahman ◽  
S. M. Ruhul Amin ◽  
A. M. Shafiqul Alam

The possible utilization of rice husk activated carbon as an adsorbent for the removal of methylene blue dye from aqueous solutions has been investigated. In this study, activated carbons, prepared from low-cost rice husk by sulfuric acid and zinc chloride activation, were used as the adsorbent for the removal of methylene blue, a basic dye, from aqueous solutions. Effects of various experimental parameters, such as adsorbent dosage and particle size, initial dye concentration, pH and flow rate were investigated in column process. The maximum uptakes of methylene blue by activated rice husk carbon at optimized conditions (particle sizes: 140 ?m; Flow rate: 1.4 mL/min; pH: 10.0; initial volume of methylene blue: 50 mL and initial concentration of methylene blue: 4.0 mg/L etc.) were found to 97.15%. The results indicate that activated carbon of rice husk could be employed as low-cost alternatives to commercial activated carbon in waste water treatment for the removal of basic dyes. This low cost and effective removal method may provide a promising solution for the removal of crystal violet dye from wastewater.DOI: http://dx.doi.org/10.3329/dujs.v60i2.11491 Dhaka Univ. J. Sci. 60(2): 185-189, 2012 (July)


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Swati Korgaonkar ◽  
Swati Korgaonkar

Adsorption of dyes from the effluent is a well-known and feasible method been used in the industry. In the present work we are using corn husk agricultural waste as a sustainable raw material for synthesizing activated carbon using biopolymer carboxyl methyl cellulose for formation of beads. The beads formed are been used for removal of reactive ultra-orange RGB , acid telon yellow FG 01, basic coracryl red C2B. The surface area of beads is 39.87m2 /g. The maximum adsorption of reactive orange RGB , acid telon yellow and basic coracryl red is 68.25mg/g, 72.54mg/g and 30.21mg/g for 50ml of dye solution. The stock solution 0.4g/l of dye solution was prepared for each dye respectively. The beads formed shows a variable pH from 2 to 12 which is favourable for textile effluent. This is a green approach to use the agricultural waste for waste water treatment.


Author(s):  
Suhaibatul Aslamiyah Abdul Shukor ◽  
Rosniza Hamzah ◽  
Mohamad Abu Bakar ◽  
N Z Noriman ◽  
Awad A. Al-Rashdi ◽  
...  

2018 ◽  
Vol 7 (3.34) ◽  
pp. 300
Author(s):  
Gobinath Ravindran ◽  
M Radha Madhavi ◽  
Bashir Suleman Abusahmin

With industrial growth, presence of pollutants is growing enormously. Removal of pollutant from waste water and effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like pH, residence time, initial solution concentration, activated carbon dosage and process temperature on the removal of Zn(II) by palm shell based activated carbon from batch adsorption process are studied systematically. The results reveal that palm shell based activated carbon can be an effective adsorbent for removal of Zinc (II) and is efficient compared to other types of adsorbent produced from agricultural waste.  


2019 ◽  
Author(s):  
Chem Int

Activated carbon, also known as activated charcoal, which is crude form of graphite, substance which is used lead pencils. Activated carbon is widely used in dye removal and also has other applications. Activated carbon has high surface area, adsorption capacity, and high adsorption rates from the gas or liquid phases. Activated carbon is also used in air purification, chromatography, energy storage, electrode materials for li-ion batteries biosensors, hydrogen storage, immobilizing the biomolecules. Therefore, activated carbon has wide applications. It is used in gas separation, solvents recovery and as catalyst. It is also used in waste-water treatment plants to remove the organic pollutants from the drinking water. For most of these applications, activated carbon is prepared from many resources by implementation of different chemical methods. The Activated carbon can also be prepared by different raw carbon resources like lignite, peat, unburnt coal and biomass wastes such as wood, sawdust, sugar cane bagasse, coconut shell, coffee beans, oil-palm stone, and Rice husk. Ligno-cellulosic waste materials, paulownia wood, pomegranate seeds, cattail, olive-tree, jatropha hull, bamboo, orange peel, thevetia peruviana, ramie, grape stalk, pine apple waste biomass, and almond shell. Activated carbon is also produced by pyrolysis of physic nut waste. Activated Carbon, prepared from all these sources, have high surface area, adsorption capacity, high adsorption rates for liquid gas separation, adsorption. Activated Carbon is widely used in waste water treatment to remove the pollutants. This review explores some of methods to prepare the activated carbon from different local sources reported by many researchers in recent years.


1986 ◽  
Vol 18 (7-8) ◽  
pp. 307-311 ◽  
Author(s):  
A. Donáth-Jobbágy ◽  
J. Káimán ◽  
R. Hajós

The efficiency of two possible intensification methods of activated sludge waste water treatment (pure oxygen activation and activated carbon addition) were compared. Experiments were carried out in laboratory scale equipment with variable reactor volume (maximum capacity 20,0 dm3, settling tank vol. 15 dm3). In order to detect even minor differences, we operated completely identical units in parallel runs, with one representing a traditional system as reference. A model sewage of industrial character, diluted milk, was used as influent and in the course of activated carbon intensification experiments an anion-active detergent was added as a poorly biodegradable model material to be removed mainly by adsorption. Reactor loads were gradually increased - from low values to overloading - by decreasing the dilution of milk or by reducing reactor volume. The effects of different intensification methods on the effluent pollution level (COD value and anion-active detergent content) and on the settling properties of sludge were examined as a function of loading. The efficiency of both intensification methods was found to be increasing with increasing loading. Comparison of the two systems showed activated carbon intensification to be more efficient in the removal of soluble COD and extremely useful in the elimination of a poorly biodegradable material.


2019 ◽  
Vol 80 (8) ◽  
pp. 1407-1412 ◽  
Author(s):  
Rue Chiramba ◽  
Gratitude Charis ◽  
Nonhlanhla Fungura ◽  
Gwiranai Danha ◽  
Tirivaviri Mamvura

Abstract Contamination of water bodies by heavy metal ions is a challenge many developing nations like Zimbabwe face, with negative environmental and socio-economic repercussions. Treating affected bodies usually requires a costly consignment of chemicals and activated carbon. This research investigates the possible use of an abundant waste resource – poultry feathers – to make activated carbon for heavy metal ion removal. Poultry consumption in this nation generates more than five million tonnes of feathers a year, with very few uses of this by-product. This research was carried out to evaluate the effectiveness of activated carbon synthesized from poultry feathers with sodium hydroxide as the activating agent. It was tested for removing heavy metal ions from waste water at Lake Chivero and the experimental work done showed that it had a removal efficiency as high as 97%, with a high affinity for lead ions as compared with chromium ions. Upon characterization, the activated carbon showed an iodine number of 520 mg and it worked best at a pH value of 8. The efficiency removal also increased with increasing adsorbent concentration as well as contact time up to a period where these factors ceased to be the limiting factors of the reaction.


Sign in / Sign up

Export Citation Format

Share Document