scholarly journals Optimization of Zinc(II) Adsorption Using Agricultural Waste

2018 ◽  
Vol 7 (3.34) ◽  
pp. 300
Author(s):  
Gobinath Ravindran ◽  
M Radha Madhavi ◽  
Bashir Suleman Abusahmin

With industrial growth, presence of pollutants is growing enormously. Removal of pollutant from waste water and effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like pH, residence time, initial solution concentration, activated carbon dosage and process temperature on the removal of Zn(II) by palm shell based activated carbon from batch adsorption process are studied systematically. The results reveal that palm shell based activated carbon can be an effective adsorbent for removal of Zinc (II) and is efficient compared to other types of adsorbent produced from agricultural waste.  

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2339 ◽  
Author(s):  
Somaia G. Mohammad ◽  
Sahar M. Ahmed ◽  
Abd El-Galil E. Amr ◽  
Ayman H. Kamel

A facile eco-friendly approach for acetampirid pesticide removal is presented. The method is based on the use of micro- and mesoporous activated carbon (TPAC) as a natural adsorbent. TPAC was synthesized via chemical treatment of tangerine peels with phosphoric acid. The prepared activated carbon was characterized before and after the adsorption process using Fourier- transform infrared (FTIR), X-ray diffraction (XRD), particle size and surface area. The effects of various parameters on the adsorption of acetampirid including adsorbent dose (0.02–0.2 g), pH 2–8, initial adsorbate concentration (10–100 mg/L), contact time (10–300 min) and temperature (25–50 °C) were studied. Batch adsorption features were evaluated using Langmuir and Freundlich isotherms. The adsorption process followed the Langmuir isotherm model with a maximum adsorption capacity of 35.7 mg/g and an equilibration time within 240 min. The adsorption kinetics of acetamiprid was fitted to the pseudo-second-order kinetics model. From the thermodynamics perspective, the adsorption was found to be exothermic and spontaneous in nature. TPAC was successfully regenerated and reused for three consecutive cycles. The results of the presented study show that TPAC may be used as an effective eco-friendly, low cost and highly efficient adsorbent for the removal of acetamiprid pesticides from aqueous solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Brice Armel Ajouafeu Alongamo ◽  
Lydie Dodo Ajifack ◽  
Julius Numbonui Ghogomu ◽  
Ndi Julius Nsami ◽  
Joseph Mbadcam Ketcha

Activated carbons were obtained from the peelings of cassava tubers (Manihot esculenta) by chemical activation using potassium hydroxide and phosphoric acid at impregnation ratios of 2 : 1 and 1 : 1, respectively, at 400°C for batch adsorption of nickel(II) ions from aqueous solution. Characterization of activated carbon samples was achieved via proximate analysis, Fourier-transform infrared spectroscopy, pH of zero-point charge, Boehm method, elemental analysis, scanning electron microscopy, and iodine number determination for each adsorbent. The effects of pH, contact time, initial adsorbate concentration, and adsorbent dose were studied at 27°C in order to optimize the conditions for maximum adsorption. Equilibrium was attained after 40 minutes of contact of both materials with activating solutions. Maximum adsorption capacities of 41.15 mg/g for ACPH, 47.39 mg/g for ACPA, 35.34 mg/g for NIC, and 34.48 mg/g for RM, respectively, were obtained at pH = 4. Equilibrium data showed that the Langmuir model best described the adsorption process with R2 closed to unity, indicative of monolayer adsorption on a homogeneous surface. Kinetic studies showed that the adsorption process is controlled by the pseudo-second-order model. These results show that activated carbon prepared from cassava peelings constitutes an effective low-cost material for the treatment of wastewater containing nickel(II) ions.


Author(s):  
R.P.K Dasanayaka

Environmental pollution caused by the anthropogenic activities is a global challenge. Pollution due to discharge of untreated wastewater, contributes to it considerably. High expenditures for the treatment technologies can be considered as one of the major reason for improper wastewater discharge. Activated carbon provides an excellent solution for this issue as it can be used as a low cost wastewater treatment adsorbent. This paper review, types of activated carbon, their applications and recovery methods in wastewater treatment. Activated carbon from conventional waste such as agricultural waste, woody waste and non conventional waste such as municipal waste can be used as a low cost media for waste water purifications. Physical and chemical processes are used to improve the adsorption property of the activated carbon. H3PO4, KOH and ZnCl2 are the most frequently used chemicals for the activation process. Granular activated carbon, powdered activated carbon, activated carbon fibers and carbon clothes are the major physical forms of the activated carbon. These physical forms are important to maximize the adsorption process according to the purpose of usage. Activated carbon is used to remove heavy metals, dyes, COD, BOD, organic contaminants and volatile organic compounds in the waste water. Various recovery methods are applied to regenerate activated carbons. Among them, chemical, thermal, and bio regeneration methods are examined. Strengths, weaknesses, opportunities, threats related to use of activated carbon and future research priority areas are also discussed


2017 ◽  
Vol 52 (1) ◽  
pp. 31-42
Author(s):  
MA Rahman ◽  
T Ahmed ◽  
IN Salehin ◽  
MD Hossain

Powdered Activated carbon (PAC) developed from date seeds was used as an adsorbent for the removal of color from textile wastewater. Batch adsorption experiments were performed in the laboratory with varying process parameters (temperature, pH, agitation, adsorbent dosage, particle size) over a range of contact periods and wastewater pollutant (color) levels. It was found that the removal mechanism could be better characterized by the Freundlich adsorption isotherm model compared to the Langmuir model. Also, The Lagergren's pseudo 2nd order kinetic model fitted relatively well ( = 0.99) over the selected range of contact times (5-60 minutes) and initial color concentrations (800-1200 Pt-Co unit) compared to the pseudo-first order model indicating that chemisorption may be playing a dominant role in the adsorption process. Both external film and intra-particle pore diffusion mechanism were involved in the adsorption process but film diffusion was found to be rate limiting. While analyzing the thermodynamics, the negative value of free energy (-1.83 to -3.4 KJ/mole), positive value of enthalpy (0.26 to 0.28 KJ/mole) and entropy (0.97 to 1.01 J/K/Mole) associated with the color removal mechanism indicated that adsorption was spontaneous and endothermic with increased disorder and randomness at the solid-liquid interface of the date seeds PAC. These experiments suggests that date seeds PAC is a very effective adsorbent, capable of removing a significant amount of color from industrial wastewater if process variables can be optimized and can be explored as a potential low-cost alternative to expensive tertiary treatment options.Bangladesh J. Sci. Ind. Res. 52(1), 31-42, 2017


2019 ◽  
Vol 32 (1) ◽  
pp. 73-78
Author(s):  
P. Janaki ◽  
R. Sudha ◽  
T.S. Sribharathi ◽  
P. Anitha ◽  
K. Poornima ◽  
...  

The adsorption performance of sulphuric acid treated low cost adsorbent synthesized by using Citrus limettioides peel as an effective raw material for the removal of cadmium(II) from water. The batch adsorption method was carried out to optimize some parameters like contact time, pH and adsorbent dose. The nonlinear isotherm equations were used to calculate the different isotherm constant of five isotherm models namely Freundlich, Langmuir, Dubinin-Radushkevich, Redlich-Peterson and Sips. The Langmuir monolayer adsorption capacity of chemically modified Citrus limettioides peel was found to be 287.60 mg g-1. The negative values of ΔGº and ΔHº showed that the adsorption process is spontaneous and exothermic.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mulu Berhe Desta

Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu) onto Activated Teff Straw (ATS) has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni), 82.9% (Cd), 81.5% (Cu), 74.5% (Cr), and 68.9% (Pb). Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents.


Author(s):  
Md. Shahin Azad ◽  
Syaza Azhari ◽  
Mohd Sukri Hassan

The utilization of biopolymer derived from Moringa oleifera bark using ZnCl2 and H2SO4 as activating agents for eliminating Methylene blue, Escherichia coli and Pseudomonas aeruginosa from producing wastewater. In this study, Methylene blue and both bacteria were effectively adsorbed by activated carbon with lowest dosage. The activated carbon was prepared from natural-by product of Moringa oleifera bark by pyrolysis in a furnace at 700°C for 1 h. The characteristics of activated carbon have been determined using Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET), pHzpc (zero point charge), and FTIR spectroscopy. The obtained result were closely fitted with Freundlich isotherm model and adsorption kinetics follow the pseudo-second order model with the highest value of correlation coefficient (R2~1). Adsorption quantity was dose dependent and bacteria were maximum adsorbed using 10 mg of activated carbon as well as 25mg for methylene blue. The maximum adsorption capacity showed within 1 hour. The bacterial load was reduced by 98% for E. coli, 96% for P. aeruginosa as well as methylene blue reduced 94.2% from aqueous solution using batch adsorption methods. Adsorption process controlled by film diffusion mechanism. These result proposed that the activated carbon of Moringa oleifera can be used as a good adsorbent for the removal of Methylene blue, E. coli and P. aeruginosa.


Author(s):  
Mohan Rao T. ◽  
K. Rajesh Kumar ◽  
G. Shyamala ◽  
R. Gobinath

With the growth of urbanization and industrialization, water bodies are getting polluted. Among various pollutants, phenol-based pollutants are common water pollutions which originate from wastewater discharged from processing manufacturing industries like petrochemical refineries, ceramic plants, textile processing, leather processing, synthetic rubbers, etc. These pollutants are toxic and have long-term ill effects on both humans and aquatic animals. Adsorption is well proven technique which is widely used for removal of pollutions from aqueous environments. But this process, is hindered due to the cost of adsorbents especially for large scale continuous processes. In this regard, adsorbents derived from waste biomass can be a great asset to reduce the cost of wastewater treatment. To meet this objective, coconut shells are chosen as biomass which is abundantly available from south east Asia. This biomass is converted into activated carbon and hence used to remove phenol from wastewater. Batch adsorption experiments were performed with different initial concentration, carbon dosage, pH and contact time. At a lower concentration of 50 mg/L of initial feed (phenol) concentration resulted in around 90% phenol removal and henceforth optimum results in phenol removal obtained in only 64%. Experimental results are in good agreement with Langmuir adsorption isotherm model and have shown a better fitting to the experimental data. These studies confirm that the coconut shell-based activated carbon could be used to effectively adsorb phenol from aqueous solutions.


2016 ◽  
Vol 19 (1) ◽  
pp. 75-84
Author(s):  
Rayhan Hossain ◽  
Mohammad Arifur Rahman ◽  
Nargish Jahan Ara ◽  
AM Shafiqul Alam

The adsorption of levafix red (LR) dye from waste water via batch adsorption onto treated jute stick powder was investigated. Studies concerning the factors influencing the adsorption such as adsorbent dosage, pH, contact time and temperature were systematically investigated and discussed. The results revealed that the maximum removal of levafix red was ~91% from water. The kinetics data were analyzed using pseudo-first order and pseudo-second order models. It was best described by the pseudo-second order model. The adsorption equilibrium follows Langmuir isotherm. This result indicates that treated jute stick powder could be employed as low-cost alternatives to commercial activated carbon for the removal of levafix red (LR) from waste water. Rapid industrialization in Bangladesh has resulted in increased water pollution that has higher dye level. Waste water from dyeing and finishing factories is a significant source of environmental pollution. The waste water is typically characterized by high levels of COD (chemical oxygen demand) concentration, high concentration of coloring material, large amount of suspended solids, highly fluctuating pH and high temperature. Dyes may therefore present an ecotoxic hazard and introduces the potential danger of bioaccumulation that may eventually affect man by transport through the food chain. As pharmaceutical industries use lots of water and intake of this type of water might have adverse effects on human health. Therefore, water purification is extremely essential for human and animal health and dye free water may be farther purified for its proper use.Bangladesh Pharmaceutical Journal 19(1): 75-84, 2016


Sign in / Sign up

Export Citation Format

Share Document