Extra colour removal in a refinery

2011 ◽  
pp. 718-725 ◽  
Author(s):  
Laura Diego ◽  
Fernando Martín ◽  
Marta G de Quevedo ◽  
Jaime Sagristá

The main factor affecting the raw sugar refining process is certainly “colour”. The higher colour removal, the higher is the obtained sugar yield. Therefore, colour removal is the main goal throughout the process. In a conventional sugar refinery colour is removed in the purification and decolorisation steps – the second one is normally done using ion-exchange resins – but there are some other ways of colour removal such as adding some colour removing agents (powdered carbon, sodium bisulphite, PCC [precipitated calcium carbonate]). In this article the pilot plant results of experiments of increasing colour removal in the refining process are described, such as PCC addition, 3rd carbonatation (re-purification), hydrogen peroxide addition, powdered carbon addition, sodium bisulphite addition and crystallization improvements. The good results achieved in some of these trials led to perform some industrial trials, the results of wich are summarized in this article as well.

2019 ◽  
pp. 529-539
Author(s):  
Vincent Ndinisa ◽  
Craig Jensen ◽  
Cebisile Maharaj

The Tongaat Hulett sugar refinery in Durban has recently commissioned a continuous ion-exchange (CIX) plant which has become a third ion-exchange stage in its sugar refining process following the existing two fixed bed (FB) batch ion-exchange stages. The plant will initially be evaluated and optimised as a third polishing stage using styrenic resin but the design is such that the plant can be operated as any stage with either acrylic or styrenic resin. The installed CIX plant consists of 30 resin vessels containing 1.3 m3 of resin each and has been designed to process up to 180 m3/h of refinery liquor. At the heart of the CIX plant is the Tongaat Hulett / IONEX Separations RDA technology, which has several advantages over the conventional carousel-based continuous ion exchange systems. The plant was commissioned in November 2018 and has operated with time efficiency to date above 98%. The CIX plant has 61% less resin inventory than the Fixed Bed plant. The colour removal efficiency is comparable for both systems. The CIX plant is using 71% less water per day than the FB plant and consumes 65% less chemicals. The CIX plant is producing on average 67% less effluent and 85% less sweetwater than the FB plant per day. Part of this remarkable performance is linked to water recovery design that was incorporated into the CIX plant. Modelling of the CIX plant operating as a first ion exchange stage, showed that there would be 31% reduction in water usage compared to the current first stage and about 11% reduction in effluent generation.


Author(s):  
Ann M. Thomas ◽  
Virginia Shemeley

Those samples which swell rapidly when exposed to water are, at best, difficult to section for transmission electron microscopy. Some materials literally burst out of the embedding block with the first pass by the knife, and even the most rapid cutting cycle produces sections of limited value. Many ion exchange resins swell in water; some undergo irreversible structural changes when dried. We developed our embedding procedure to handle this type of sample, but it should be applicable to many materials that present similar sectioning difficulties.The purpose of our embedding procedure is to build up a cross-linking network throughout the sample, while it is in a water swollen state. Our procedure was suggested to us by the work of Rosenberg, where he mentioned the formation of a tridimensional structure by the polymerization of the GMA biproduct, triglycol dimethacrylate.


Author(s):  
Kathpalia Harsha ◽  
Das Sukanya

Ion Exchange Resins (IER) are insoluble polymers having styrene divinylbenzene copolymer backbone that contain acidic or basic functional groups and have the ability to exchange counter ions with the surrounding aqueous solutions. From the past many years they have been widely used for purification and softening of water and in chromatographic columns, however recently their use in pharmaceutical industry has gained considerable importance. Due to the physical stability and inert nature of the resins, they can be used as a versatile vehicle to design several modified release dosage forms The ionizable drug is complexed with the resin owing to the property of ion exchange. This resin complex dissociatesin vivo to release the drug. Based on the dissociation strength of the drug from the drug resin complex, various release patterns can be achieved. Many formulation glitches can be circumvented using ion exchange resins such as bitter taste and deliquescence. These resins also aid in enhancing disintegrationand stability of formulation. This review focuses on different types of ion exchange resins, their preparation methods, chemistry, properties, incompatibilities and their application in various oral drug delivery systems as well as highlighting their use as therapeutic agents.


2004 ◽  
Vol 3 (3) ◽  
pp. 447-455
Author(s):  
Viky Dicu ◽  
Carmen Iesan ◽  
Mihai Chirica ◽  
Satish Bapat

2014 ◽  
Vol 13 (9) ◽  
pp. 2145-2152 ◽  
Author(s):  
Liliana Lazar ◽  
Laura Bulgariu ◽  
Bogdan Bandrabur ◽  
Ramona-Elena Tataru-Farmus ◽  
Mioara Drobota ◽  
...  

2012 ◽  
pp. 381-384 ◽  
Author(s):  
M.A. Theoleyre ◽  
Anne Gonin ◽  
Dominique Paillat

Regeneration of resins used for decolorization of sugar solutions is done with concentrated salt solutions. Nanofiltration membranes have been proven effective, in terms of industrial efficiency in decreasing salt consumption. More than 90% of the salt that is necessary for regeneration can be recycled through a combination of direct recycling of intermediate eluates, the separation of colored compounds by use of very selective nanofiltration membranes and a multiple-effect evaporation of salty permeates. The desalted color compound solution is sent to the molasses, limiting considerably the effluent to be treated. Starting from a liquor of 800 IU, the water requirement is limited to less than 100 L/t of sugar and the amount of wastewater can be reduced to less than 40 L/t of sugar.


2016 ◽  
pp. 377-380
Author(s):  
Marc André Théoleyre ◽  
Anne Gonin ◽  
Dominique Paillat

Regeneration of resins used for decolorization of sugar solutions is done with concentrated salt solutions. Nanofiltration membranes have been proven effective, in terms of industrial efficiency in decreasing salt consumption. More than 90% of the salt that is necessary for regeneration can be recycled through a combination of direct recycling of intermediate eluates, the separation of colored compounds by use of very selective nanofiltration membranes and a system to concentrate salty permeates. According to specific local conditions on energy supply and cost, the concentration of salty permeates can be either a multiple effect evaporator or a combination of electrodialysis and reverse osmosis. The desalted color compound solution is sent to the molasses, limiting considerably the effluent to be treated. Starting from a liquor of 800 IU, the water requirement is limited to less than 100 L/t of sugar and the amount of wastewater can be reduced to less than 40 L/t of sugar.


1980 ◽  
Vol 45 (6) ◽  
pp. 1780-1784 ◽  
Author(s):  
Atanas Andreev ◽  
Lachezar Prahov ◽  
Dimitar Shopov

The formation of Oxygen paramagnetic adducts of Co(II) containing ion-exchange resins in the presence of adsorbed ethylenediamine has been found. The EPR parameters of a complex of the type Co(III) (en)2O-2 and of O-2 species formed in the presence of Co(en)2+3 have been described. The catalytic properties of Co-ethylenediamine surface complexes with respect to the hydrogen peroxide decomposition reaction have been investigated and a probable mechanism has been suggested.


Sign in / Sign up

Export Citation Format

Share Document