scholarly journals Use of aerogenerators for alternative electricity production: adaptations and challenges in manaus company

The combination of tools and the possibility of arranging mechanisms that prove to be sustainable and aimed at meeting a certain environmentally correct demand is a challenge today, as it depends on the perception of professionals in charge of implementing changes in conventional systems. Ensuring that the precepts of energy production are shaped bringing more efficiency, also implies the impact on the environment, be it small, medium or large, certainly, that actions that reduce this impact corroborate for new conducts and other applications. An aerogenerator system is a device capable of generating energy by the force of the winds, which mobilizes the blades, whose movement can be reused to aerate environments. What brings the expectation of the speed gain generated in the blades of the system, can be passive of other uses, this aspect can turn into advantages, because these subsidies would be wasted if they were used independently they would be wasted. This work is part of a construction of a system implanted in a factory in the Industrial District of Manaus, using a 500 Watt wind turbine for power generation, where the system was adapted to an extractor in the factory's Cafeteria for presenting a slab that facilitated the installation. The idealization of a combination of instruments that will compose a matrix capable of acting with sustainability, the methodology consists of creating a mechanism of reordering a structure to maintain itself with sustainability, with a bibliographic survey on the impact conditions of the use of materials for power generation, combining fundamentals for the application of the generated by-products.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Yiannis A. Katsigiannis ◽  
George S. Stavrakakis ◽  
Christodoulos Pharconides

This paper examines the effect of different wind turbine classes on the electricity production of wind farms in two areas of Cyprus Island, which present low and medium wind potentials: Xylofagou and Limassol. Wind turbine classes determine the suitability of installing a wind turbine in a particulate site. Wind turbine data from five different manufacturers have been used. For each manufacturer, two wind turbines with identical rated power (in the range of 1.5 MW–3 MW) and different wind turbine classes (IEC II and IEC III) are compared. The results show the superiority of wind turbines that are designed for lower wind speeds (IEC III class) in both locations, in terms of energy production. This improvement is higher for the location with the lower wind potential and starts from 7%, while it can reach more than 50%.


2017 ◽  
Vol 46 (2) ◽  
pp. 224-241 ◽  
Author(s):  
Jacob R. Fooks ◽  
Kent D. Messer ◽  
Joshua M. Duke ◽  
Janet B. Johnson ◽  
Tongzhe Li ◽  
...  

This study uses an experiment where ferry passengers are sold hotel room “views” to evaluate the impact of wind turbines views on tourists’ vacation experience. Participants purchase a chance for a weekend hotel stay. Information about the hotel rooms was limited to the quality of the hotel and its distance from a large wind turbine, as well as whether or not a particular room would have a view of the turbine. While there was generally a negative effect of turbine views, this did not hold across all participants, and did not seem to be effected by distance or hotel quality.


2022 ◽  
Vol 7 ◽  
pp. 9
Author(s):  
Seyed Amir Kaboli ◽  
Reyhaneh Nazmabadi

There continues to be significant attention and investment in wind power generation, which can supply a high percentage of the global demand for renewable energy if harvested efficiently. The research study is based on techno-economic analysis of the feasibility of implementing wind power generation in Kuwait with a power generation capacity of 105 MW based on 50 wind turbines, which has a major requirement for clean energy. The study focused on three main areas of analysis and numerical modeling using the RETScreen software tool. The first area involved evaluating the performance and efficacy of generating wind power by collecting, analyzing, and modeling data on observed wind levels, wind turbine operation, and wind power generation. The second area comprised an environmental impact review to assess the environmental benefits of implementing wind power. The third area involved economic analysis of installing wind power in Kuwait. The analysis was undertaken to assess the energy recovery time for wind energy and determine the mitigation of global warming and pollution levels, the decrease of toxic emissions, and any cost savings from implementing clean energy systems in Kuwait. Additionally, sensitivity analysis was undertaken to determine the impact of certain variables in the modeling process. The results are used to estimate that the energy price would be $0.053 per kWh for a power generation capacity of 105 MWh based on an initial cost of $168 million and O&M of $5 million for 214,000 MWh of electricity exported to the grid. Moreover, the wind turbine farm will potentially avoid the emission of approximately 1.8 million tonnes of carbon dioxide per year, thereby saving approximately $9 million over 20 years spent installing carbon capture systems for conventional power plants. The wind farm containing a simple wind turbine is estimated to have a payback period of 9.1 years.


2020 ◽  
Author(s):  
Alessandro Croce ◽  
Stefano Cacciola ◽  
Luca Sartori ◽  
Paride De Fidelibus

Abstract. Wind farm control is one of the solutions recently proposed to increase the overall energy production of a wind power plant. A generic wind farm control is typically synthesized so as to optimize the energy production of the entire wind farm by reducing the detrimental effects due to wake-turbine interactions. As a matter of fact, the performance of a farm control is typically measured by looking mainly at the increase of produced power, possibly weighted with the wind Weibull and rose at a specific place, and, sometimes, by looking also at the fatigue loads. However, an aspect which is rather overlooked is the evaluation of the impact that a farm control law has on the maximum loads and on the dynamic responses under extreme conditions of the individual wind turbine. In this work, two promising wind farm controls, based respectively on Wake Redirection (WR) and Dynamic Induction Control (DIC) strategy, are evaluated at a single wind turbine level. To do so, a two-pronged analysis is performed. Firstly, the control techniques are evaluated in terms of the related impact on some specific key performance indicators (e.g. fatigue and ultimate loads, actuator duty cycle and annual energy production). Secondarily, an optimal blade redesign process, which takes into account the presence of the wind farm control, is performed with the goal of quantifying the possible modification in the structure of the blade and hence of quantifying the impact of the control on the Cost of Energy model.


2022 ◽  
Vol 7 (1) ◽  
pp. 1-17
Author(s):  
Alessandro Croce ◽  
Stefano Cacciola ◽  
Luca Sartori

Abstract. Wind farm control is one of the solutions recently proposed to increase the overall energy production of a wind power plant. A generic wind farm control is typically synthesized so as to optimize the energy production of the entire wind farm by reducing the detrimental effects due to wake–turbine interactions. As a matter of fact, the performance of a farm control is typically measured by looking at the increase in the power production, properly weighted through the wind statistics. Sometimes, fatigue loads are also considered in the control optimization problem. However, an aspect which is rather overlooked in the literature on this subject is the evaluation of the impact that a farm control law has on the individual wind turbine in terms of maximum loads and dynamic response under extreme conditions. In this work, two promising wind farm controls, based on wake redirection (WR) and dynamic induction control (DIC) strategy, are evaluated at the level of a single front-row wind turbine. To do so, a two-pronged analysis is performed. Firstly, the control techniques are evaluated in terms of the related impact on some specific key performance indicators, with special emphasis on ultimate loads and maximum blade deflection. Secondarily, an optimal blade redesign process is performed with the goal of quantifying the modification in the structure of the blade entailed by a possible increase in ultimate values due to the presence of wind farm control. Such an analysis provides for an important piece of information for assessing the impact of the farm control on the cost-of-energy model.


2019 ◽  
Vol 11 (24) ◽  
pp. 7004 ◽  
Author(s):  
Yongzhong Jiang ◽  
Valerii Havrysh ◽  
Oleksandr Klymchuk ◽  
Vitalii Nitsenko ◽  
Tomas Balezentis ◽  
...  

Renewable energy is expected to play a significant role in power generation. The European Union, the USA, China, and others, are striving to limit the use of energy crop for energy production and to increase the use of crop residue both on the field and for energy generation processes. Therefore, crop residue may become a major energy source, with Ukraine following this course. Currently in Ukraine, renewable power generation does not exceed 10% of total electricity production. Despite a highly developed agriculture sector, there are only a small number of biomass power plants which burn crop residues. To identify possibilities for renewable power generation, the quantity of crop residues, their energy potential, and potential electricity generation were appraised. Cluster analysis was used to identify regions with the highest electricity consumption and crop residue energy potential. The major crops (wheat, barley, rapeseed, sunflower, and soybean) were considered in this study. A national production of crop residue for energy production of 48.66 million tons was estimated for 2018. The availability of crop residues was analyzed taking into account the harvest, residue-to-crop ratio, and residue removal rate. The crop residue energy potential of Ukraine has been estimated at 774.46 PJ. Power generation technologies have been analyzed. This study clearly shows that crop residue may generate between 27 and 108 billion kWh of power. We have selected preferable regions for setting up crop residue power plants. The results may be useful for the development of energy policy and helpful for investors in considering power generation projects.


Author(s):  
Anass Gourma ◽  
Abdelmajid Berdai ◽  
Moussa Reddak

Wind farm has been growing in recent years due to its very competitive electricity production cost. Wind generators have gone from a few kilowatts to megawatts. However, the participation of the wind turbine in the stability of the electricity grid is a critical point to check, knowing that the electricity grid is meshed, any change in active and reactive flux at the network level affects its stability. With a rate of 50% wind turbine penetration into the electricity grid, the stability of the rotor angle is a dynamic phenomenon which is only visible by the variation of the active energy. The purpose of this journal is to verify the impact of wind turbine integration on an electrical grid, by exploiting the relationship between the reactive energy produced by the Doubly Fed Induction Generator equipping most wind energy systems, and the stability of the rotor angle of the synchronous generators equipping the conventional power plants in the electrical system.


2018 ◽  
Vol 188 ◽  
pp. 04007
Author(s):  
Panagiotis Georgoulopoulos ◽  
Aggelos Kaldellis ◽  
John K. Kaldellis

Wind energy is currently an established electricity production option worldwide, contributing to the reduction of environmental pollution and CO2 emissions. Actually, during the last twenty years a considerable installed wind power increase has been encountered, thus the up to date installed wind power approaches 550GWe. The situation in Greece is fairly well since the current wind power in operation is approximately 2700MWe. As it is well established, the reliability of the wind turbines influences both the energy production and the maintenance and operation cost of commercial wind parks. As a result, the operational period of the machine is reduced, while additional expenses are needed in order to face the downtime causes. In the present work operational data of an important number of wind parks located in Greece have been analyzed. Moreover, emphasis is given on the impact that the wind parks' location has on the failures of commercial wind turbines. For this purpose real world data concerning similar wind parks, based on the same type of wind turbines, located on the mainland, on the islands or near the sea have been collected and analyzed. According to the data gathered one may compare the different failure patterns of contemporary commercial wind turbines operating for up to ten years all around Greece.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6728
Author(s):  
Bartosz Ceran ◽  
Jakub Jurasz ◽  
Robert Wróblewski ◽  
Adam Guderski ◽  
Daria Złotecka ◽  
...  

In Poland, existing barrages are characterized by relatively high flow and low head, which is challenging for the effective utilization of theoretical watercourse power. The paper presents the impact of the minimum head of the hydro sets on the annual electricity production of small hydropower plants at low-head locations for two types of water turbines: Archimedes and Kaplan turbines. A developed mathematical model was used to simulate energy yield from Archimedes and Kaplan turbines for a given value of the minimum technical head, depending on the number of installed hydro sets. For economic analysis purposes, the levelized cost of electricity (LCOE) and net present value (NPV) indicators were calculated. The conducted research allowed for comparing Archimedes and Kaplan’s turbine operating conditions and how the minimum head parameter influences their electricity production and utilization time. As concluded in the results, the influence of minimum head in energy production is more distinct for the Archimedes screw technology than for the Kaplan turbine. The research shows that the decrease in energy production associated with the hydro unit’s minimum head parameter is from 0% to 30% for Kaplan, and it is 6% to 52% for Archimedes turbines.


Author(s):  
Ainaa Maya Munira Ismail ◽  
Zurriati Mohd Ali ◽  
Kamariah Md Isa ◽  
Mohammad Abdullah ◽  
Fazila Mohd Zawawi

Presently the worldwide lockdown from Covid-19 give a huge effect on different sectors across the board, notably on energy consumption. Lockdowns have fuelled the intensification of low-carbon resources in terms of electricity production, yet a drastic upswing in electricity use in residential districts during the pandemic. By exploring economic renewable energy resources, the world is trying to overcome the crisis and one of them is wind energy, where this sustainable energy system is highly demanded, thus reducing global CO2 emissions. Researchers have carried out several findings on wind energy obtained from wind turbines at various potential locations, but most of it used natural sources as a wind stream. Therefore, a revolutionary concept on extracting clean energy from manufactured wind resources with wind turbine system for power generation is introduced in recent studies. The main goal of this review paper is to emphasize the performances of power generation through Exhaust Air Energy Recovery Wind Turbine. The potentiality of wind extractions is reviewed to achieve the clear overview of this new progressive ideas and the important configurations is accentuated. Most findings indicated that this energy recovery device converts wasted energy to a more profitable form by converting it to electricity, resulting in a rapid return on investment. Moreover, the enclosing the output area of wind turbines for recovering energy enhances overall efficiency.


Sign in / Sign up

Export Citation Format

Share Document