scholarly journals Refinement of land use data for emission calculations in the CHIMERE chemistry-transport model: A case study for the Nizhny Novgorod region .

2021 ◽  
Vol 3 ◽  
pp. 150-161
Author(s):  
D.V. Borisov ◽  
◽  
I.U. Shalygina ◽  

Refinement of land use data for emission calculations in the CHIMERE chemistry-transport model: A case study for the Nizhny Novgorod region / Borisov D.V., Shalygina I.U. // Hydrometeorological Research and Forecasting, 2021, no. 3 (381), pp. 150-161. The quality of calculating the concentration of pollutants in the chemistry-transport model largely depends on the reliability of used emission data. The possibility of updating the EMEP (European Monitoring and Evaluation Program) emission data using OpenStreetMap geodata for the CHIMERE chemistry-transport model calculations is discussed on the example of the Nizhny Novgorod region. The GlobCover land-use data refinement procedure based on OpenStreetMap information provides a 3.3% increase in the urban area and a more accurate configuration of the emission field as compared to the real distribution of sources of atmospheric emissions. Experimental CHIMERE chemistry-transport model calculations of pollutant concentrations based on the initial and updated emission fields demonstrated the efficiency of the proposed approach. Keywords: emissions, EMEP, land use, OpenStreetMap, CHIMERE chemistry-transport model, air quality

2013 ◽  
Vol 13 (14) ◽  
pp. 7225-7240 ◽  
Author(s):  
J. Barré ◽  
L. El Amraoui ◽  
P. Ricaud ◽  
W. A. Lahoz ◽  
J.-L. Attié ◽  
...  

Abstract. The behavior of the extratropical transition layer (ExTL) is investigated using a chemistry transport model (CTM) and analyses derived from assimilation of MLS (Microwave Limb Sounder) O3 and MOPITT (Measurements Of Pollution In The Troposphere) CO data. We firstly focus on a stratosphere–troposphere exchange (STE) case study that occurred on 15 August 2007 over the British Isles (50° N, 10° W). We evaluate the effect of data assimilation on the O3–CO correlations. It is shown that data assimilation disrupts the relationship in the transition region. When MLS O3 is assimilated, CO and O3 values are not consistent between each other, leading to unphysical correlations at the STE location. When MLS O3 and MOPITT CO assimilated fields are taken into account in the diagnostics the relationship happens to be more physical. We then use O3–CO correlations to quantify the effect of data assimilation on the height and depth of the ExTL. When the free-model run O3 and CO fields are used in the diagnostics, the ExTL distribution is found 1.1 km above the thermal tropopause and is 2.6 km wide (2σ). MOPITT CO analyses only slightly sharpen (by −0.02 km) and lower (by −0.2 km) the ExTL distribution. MLS O3 analyses provide an expansion (by +0.9 km) of the ExTL distribution, suggesting a more intense O3 mixing. However, the MLS O3 analyses ExTL distribution shows a maximum close to the thermal tropopause and a mean location closer to the thermal tropopause (+0.45 km). When MLS O3 and MOPITT CO analyses are used together, the ExTL shows a mean location that is the closest to the thermal tropopause (+0.16 km). We also extend the study at the global scale on 15 August 2007 and for the month of August 2007. MOPITT CO analyses still show a narrower chemical transition between stratosphere and troposphere than the free-model run. MLS O3 analyses move the ExTL toward the troposphere and broaden it. When MLS O3 analyses and MOPITT CO analyses are used together, the ExTL matches the thermal tropopause poleward of 50°.


2020 ◽  
Author(s):  
Christian A. Schmidt ◽  
Peter Huszár ◽  
Monika Mayer ◽  
Johannes Fritzer ◽  
Harald E. Rieder

<p>Despite ambitious efforts to abate surface air pollution, the air quality thresholds for PM10 and PM2.5 are regularly exceeded in the state of Styria. PM target levels are most frequently exceeded in industrial regions and urban cores of the forelands preceeding the alps. Besides local emissions, ambient meteorology and particularly stagnation are of special importance for PM pollution. Here we assess local and regional changes in PM pollution following emission reduction measures, while simultaneously considering effects of meteorological variability. We further supplement our observational study with a set of high-resolution chemistry-transport-model (CTM) simulations to assess future changes in the PM burden in Styria.</p>


2021 ◽  
Author(s):  
Jacinta Edebeli ◽  
Curdin Spirig ◽  
Julien Anet

<p>The fifth version of the Emission Database for Global Atmospheric Research (EDGAR 5.0) provides an impressive inventory of various pollutants. Pollutants from different emission sectors are available with daily, monthly and yearly temporal profiles at a high global resolution of 0.1°×0.1°. Although this resolution has been sufficient for regional air quality studies, the emissions appeared to be too coarse for local air quality studies in areas with complex topography. With Switzerland as a case study, we present our approach for downscaling EDGAR emission data to a much finer resolution of 0.02°×0.02° with the aim of modelling local air quality.</p><p>We downscaled the EDGAR emissions using a combination of GIS tools including QGIS, ArcGIS, and a series of python scripts. We obtained the surface coverage of different land use features within the defined EDGAR emission sectors from Open Street Map (OSM) using the <em>QuickOSM</em> tool in QGIS. With the calculated local surface area coverage of the emissions sectors, we downscaled the EDGAR inventory data within ArcGIS using a set of developed Arcpy script tools.</p><p>The outcome was a much finer resolved emission dataset which we fed into the WRF-CHEM air quality model within a pilot project. A comparison of the modelled pollutant concentrations using the two datasets (original EDGAR data and the downscaled data) shows an improved agreement between the downscaled dataset and the measurement data.</p><p>Studies investigating the impact of urbanization, land use change or traffic pattern on air quality may benefit from our downscaling solution, which, thanks to the global coverage of OSM, can be globally applied.</p>


2016 ◽  
Vol 16 (19) ◽  
pp. 12667-12701 ◽  
Author(s):  
Bertrand Bessagnet ◽  
Guido Pirovano ◽  
Mihaela Mircea ◽  
Cornelius Cuvelier ◽  
Armin Aulinger ◽  
...  

Abstract. The EURODELTA III exercise has facilitated a comprehensive intercomparison and evaluation of chemistry transport model performances. Participating models performed calculations for four 1-month periods in different seasons in the years 2006 to 2009, allowing the influence of different meteorological conditions on model performances to be evaluated. The exercise was performed with strict requirements for the input data, with few exceptions. As a consequence, most of differences in the outputs will be attributed to the differences in model formulations of chemical and physical processes. The models were evaluated mainly for background rural stations in Europe. The performance was assessed in terms of bias, root mean square error and correlation with respect to the concentrations of air pollutants (NO2, O3, SO2, PM10 and PM2.5), as well as key meteorological variables. Though most of meteorological parameters were prescribed, some variables like the planetary boundary layer (PBL) height and the vertical diffusion coefficient were derived in the model preprocessors and can partly explain the spread in model results. In general, the daytime PBL height is underestimated by all models. The largest variability of predicted PBL is observed over the ocean and seas. For ozone, this study shows the importance of proper boundary conditions for accurate model calculations and then on the regime of the gas and particle chemistry. The models show similar and quite good performance for nitrogen dioxide, whereas they struggle to accurately reproduce measured sulfur dioxide concentrations (for which the agreement with observations is the poorest). In general, the models provide a close-to-observations map of particulate matter (PM2.5 and PM10) concentrations over Europe rather with correlations in the range 0.4–0.7 and a systematic underestimation reaching −10 µg m−3 for PM10. The highest concentrations are much more underestimated, particularly in wintertime. Further evaluation of the mean diurnal cycles of PM reveals a general model tendency to overestimate the effect of the PBL height rise on PM levels in the morning, while the intensity of afternoon chemistry leads formation of secondary species to be underestimated. This results in larger modelled PM diurnal variations than the observations for all seasons. The models tend to be too sensitive to the daily variation of the PBL. All in all, in most cases model performances are more influenced by the model setup than the season. The good representation of temporal evolution of wind speed is the most responsible for models' skillfulness in reproducing the daily variability of pollutant concentrations (e.g. the development of peak episodes), while the reconstruction of the PBL diurnal cycle seems to play a larger role in driving the corresponding pollutant diurnal cycle and hence determines the presence of systematic positive and negative biases detectable on daily basis.


2003 ◽  
Vol 3 (3) ◽  
pp. 521-533 ◽  
Author(s):  
C. Robles González ◽  
M. Schaap ◽  
G. de Leeuw ◽  
P. J. H. Builtjes ◽  
M. van Loon

Abstract. Aerosol optical depths (AOD) and Angström coefficients over Europe were retrieved using data from the ATSR-2 radiometer on board the ESA satellite ERS-2, for August 1997. Taking advantage of the nadir and forward view of the ATSR-2, the dual view algorithm was used over land to eliminate the influence of the surface reflection. Over sea the AOD was retrieved using only the forward observations. Retrieved aerosol optical properties are in good agreement with those from ground-based sunphotometers. The AOD and Angström coefficients together yield information on the column integrated effective aerosol distribution.  Observed regional variations of the AOD and Angström coefficient are related to anthropogenic emissions of aerosol precursors such as SO2 and NOx in the major European industrial and urban areas, and their subsequent transformation into the aerosol phase. The influence of anthropogenic aerosols such as ammonium sulphate and ammonium nitrate on the total AOD is estimated using a regional chemistry transport model. Sulphate is estimated to contribute from 15% in very clean areas to 70% in polluted areas, the contribution of nitrate is between 5% and 25% over most of Europe. This paper shows the great importance of nitrate in summer over The Netherlands.


2012 ◽  
Vol 12 (8) ◽  
pp. 22023-22057
Author(s):  
J. Barré ◽  
L. El Amraoui ◽  
P. Ricaud ◽  
J.-L. Attié ◽  
W. A. Lahoz ◽  
...  

Abstract. The behavior of the Extra-tropical Transition Layer (ExTL) in the lowermost stratosphere is investigated using a Chemistry Transport Model (CTM) and analyses derived from assimilation of MLS (Microwave Limb Sounder) O3 and MOPITT (Measurements Of Pollution In The Troposphere) CO data. We use O3-CO correlations to quantify the effect of the assimilation on the height and depth of the ExTL. We firstly focus on a Stratosphere-Troposphere Exchange (STE) case study which occurred on 15 August 2007 over the British Isles (50° N, 10° W). We also extend the study at the global scale for the month of August 2007. For the STE case study, MOPITT CO analyses have the capability to sharpen the ExTL distribution whereas MLS O3 analyses provide a tropospheric expansion of the ExTL distribution with its maximum close to the thermal tropopause. When MLS O3 and MOPITT CO analyses are used together, the ExTL shows more realistic results and matches the thermal tropopause. At global scale, MOPITT CO analyses still show a sharper chemical transition between stratosphere and troposphere than the free model run. MLS O3 analyses move the ExTL toward the troposphere and broaden it. When MLS O3 analyses and MOPITT CO analyses are used together the ExTL matches the thermal tropopause poleward of 50°. This study shows that data assimilation can help overcome the shortcomings associated with a relatively coarse model resolution. The ExTL spread is larger in the Northern Hemisphere than the Southern Hemisphere suggesting that mixing processes are more active in the UTLS in the Northern Hemisphere than in the Southern Hemisphere. This work opens perspectives for studying the seasonal variations of the ExTL at extra-tropical latitudes.


2020 ◽  
Vol 13 (12) ◽  
pp. 6303-6323
Author(s):  
Bruce Rolstad Denby ◽  
Michael Gauss ◽  
Peter Wind ◽  
Qing Mu ◽  
Eivind Grøtting Wærsted ◽  
...  

Abstract. A description of the new air quality downscaling model – the urban EMEP (uEMEP) and its combination with the EMEP MSC-W model (European Monitoring and Evaluation Programme Meteorological Synthesising Centre West) – is presented. uEMEP is based on well-known Gaussian modelling principles. The uniqueness of the system is in its combination with the EMEP MSC-W model and the “local fraction” calculation contained within it. This allows the uEMEP model to be imbedded in the EMEP MSC-W model and downscaling can be carried out anywhere within the EMEP model domain, without any double counting of emissions, if appropriate proxy data are available that describe the spatial distribution of the emissions. This makes the model suitable for high-resolution calculations, down to 50 m, over entire countries. An example application, the Norwegian air quality forecasting and assessment system, is described where the entire country is modelled at a resolution of between 250 and 50 m. The model is validated against all available monitoring data, including traffic sites, in Norway. The results of the validation show good results for NO2, which has the best known emissions, and moderately good for PM10 and PM2.5. In Norway, the largest contributor to PM, even in cities, is long-range transport followed by road dust and domestic heating emissions. These contributors to PM are more difficult to quantify than NOx exhaust emission from traffic, which is the major contributor to NO2 concentrations. In addition to the validation results, a number of verification and sensitivity results are summarised. One verification showed that single annual mean calculations with a rotationally symmetric dispersion kernel give very similar results to the average of an entire year of hourly calculations, reducing the runtime for annual means by 4 orders of magnitude. The uEMEP model, in combination with EMEP MSC-W model, provides a new tool for assessing local-scale concentrations and exposure over large regions in a consistent and homogenous way and is suitable for large-scale policy applications.


2004 ◽  
Vol 4 (4) ◽  
pp. 3975-4018 ◽  
Author(s):  
M. Krol ◽  
S. Houweling ◽  
B. Bregman ◽  
M. van den Broek ◽  
A. Segers ◽  
...  

Abstract. This paper describes the global chemistry Transport Model, version 5 (TM5) which allows two-way nested zooming. The model is used for global studies which require high resolution regionally but can work on a coarser resolution globally. The zoom algorithm introduces refinement in both space and time in some predefined regions. Boundary conditions of the zoom region are provided by a coarser parent grid and the results of the zoom area are communicated back to the parent. A case study using 222Rn measurements that were taken during the MINOS campaign reveals the advantages of local zooming. As a next step, it is investigated to what extent simulated concentrations over Europe are influenced by using an additional zoom domain over North America. An artificial ozone-like tracer is introduced with a lifetime of twenty days and simplified non-linear chemistry. The concentration differences at Mace Head (Ireland) are generally smaller than 10%, much smaller than the effects of the resolution enhancement over Europe. Thus, coarsening of resolution at some distance of a sampling station seems allowed. However, it is also noted that the budgets of the tracers change considerably due to resolution dependencies of, for instance, vertical transport. Due to the two-way nested algorithm, TM5 therefore offers a consistent tool to study the effects of grid refinement on global atmospheric chemistry issues like intercontinental transport of air pollution.


Sign in / Sign up

Export Citation Format

Share Document