scholarly journals Analysis of finite-source cluster networks

2016 ◽  
Vol 25 (2) ◽  
pp. 223-235
Author(s):  
ADAM TOTH ◽  
◽  
TAMAS BERCZES ◽  
ATTILA KUKI ◽  
BELA ALMASI ◽  
...  

Nowadays the distributed heterogeneous resources of networks, like the computational grid, start to have a greater part of interest so, the investigations of such systems are vital. Because of the more efficient utilisation of the resources, the job scheduling becomes more challenging for the system administrators. The allocation of the arriving jobs has a great impact on the efficiency and the energy consumption of the system. In this paper, we present a finite source generalized model for the performance evaluation of scheduling compute-intensive jobs based on the infinite model of Tien Van Do. The available computers are classified into three groups. This classification is based on two aspects: high performance priority (HP) and energy efficiency priority (EE). We investigate three schemes (separate queue, class queue and common queue) for buffering the jobs in a computational cluster that is built from Commercial Off-The-Shelf (COTS) servers. Our main interest is to calculate performance measures and energy consumption of the system using the different buffering schemes and classifications.

Author(s):  
Shiv Prakash ◽  
Deo Prakash Vidyarthi

Consumption of energy in the large computing system is an important issue not only because energy sources are depleting fast but also due to the deteriorating environmental conditions. A computational grid is a large heterogeneous distributed computing platform which consumes enormous energy in the task execution. Energy-aware job scheduling, in the computational grid, is an important issue that has been addressed in this work. If the tasks are properly scheduled, keeping the optimal energy concern, it is possible to save the energy consumed by the system in the task execution. The prime objective, in this work, is to schedule the dependent tasks of a job, on the grid nodes with optimal energy consumption. Energy consumption is estimated with the help of Dynamic Voltage Frequency Scaling (DVFS). Makespan, while optimizing the energy consumption, is also taken care of in the proposed model. GA is applied for the purpose and therefore the model is named as Energy Aware Genetic Algorithm (EAGA). Performance evaluation of the proposed model is done using GridSim simulator. A comparative study with other existing models viz. min-min and max-min proves the efficacy of the proposed model.


2020 ◽  
Vol 15 ◽  
Author(s):  
Weiwen Zhang ◽  
Long Wang ◽  
Theint Theint Aye ◽  
Juniarto Samsudin ◽  
Yongqing Zhu

Background: Genotype imputation as a service is developed to enable researchers to estimate genotypes on haplotyped data without performing whole genome sequencing. However, genotype imputation is computation intensive and thus it remains a challenge to satisfy the high performance requirement of genome wide association study (GWAS). Objective: In this paper, we propose a high performance computing solution for genotype imputation on supercomputers to enhance its execution performance. Method: We design and implement a multi-level parallelization that includes job level, process level and thread level parallelization, enabled by job scheduling management, message passing interface (MPI) and OpenMP, respectively. It involves job distribution, chunk partition and execution, parallelized iteration for imputation and data concatenation. Due to the design of multi-level parallelization, we can exploit the multi-machine/multi-core architecture to improve the performance of genotype imputation. Results: Experiment results show that our proposed method can outperform the Hadoop-based implementation of genotype imputation. Moreover, we conduct the experiments on supercomputers to evaluate the performance of the proposed method. The evaluation shows that it can significantly shorten the execution time, thus improving the performance for genotype imputation. Conclusion: The proposed multi-level parallelization, when deployed as an imputation as a service, will facilitate bioinformatics researchers in Singapore to conduct genotype imputation and enhance the association study.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4089
Author(s):  
Kaiqiang Zhang ◽  
Dongyang Ou ◽  
Congfeng Jiang ◽  
Yeliang Qiu ◽  
Longchuan Yan

In terms of power and energy consumption, DRAMs play a key role in a modern server system as well as processors. Although power-aware scheduling is based on the proportion of energy between DRAM and other components, when running memory-intensive applications, the energy consumption of the whole server system will be significantly affected by the non-energy proportion of DRAM. Furthermore, modern servers usually use NUMA architecture to replace the original SMP architecture to increase its memory bandwidth. It is of great significance to study the energy efficiency of these two different memory architectures. Therefore, in order to explore the power consumption characteristics of servers under memory-intensive workload, this paper evaluates the power consumption and performance of memory-intensive applications in different generations of real rack servers. Through analysis, we find that: (1) Workload intensity and concurrent execution threads affects server power consumption, but a fully utilized memory system may not necessarily bring good energy efficiency indicators. (2) Even if the memory system is not fully utilized, the memory capacity of each processor core has a significant impact on application performance and server power consumption. (3) When running memory-intensive applications, memory utilization is not always a good indicator of server power consumption. (4) The reasonable use of the NUMA architecture will improve the memory energy efficiency significantly. The experimental results show that reasonable use of NUMA architecture can improve memory efficiency by 16% compared with SMP architecture, while unreasonable use of NUMA architecture reduces memory efficiency by 13%. The findings we present in this paper provide useful insights and guidance for system designers and data center operators to help them in energy-efficiency-aware job scheduling and energy conservation.


2021 ◽  
Vol 11 (15) ◽  
pp. 7115
Author(s):  
Chul-Ho Kim ◽  
Min-Kyeong Park ◽  
Won-Hee Kang

The purpose of this study was to provide a guideline for the selection of technologies suitable for ASHRAE international climate zones when designing high-performance buildings. In this study, high-performance technologies were grouped as passive, active, and renewable energy systems. Energy saving technologies comprising 15 cases were categorized into passive, active, and renewable energy systems. EnergyPlus v9.5.0 was used to analyze the contribution of each technology in reducing the primary energy consumption. The energy consumption of each system was analyzed in different climates (Incheon, New Delhi, Minneapolis, Berlin), and the detailed contributions to saving energy were evaluated. Even when the same technology is applied, the energy saving rate differs according to the climatic characteristics. Shading systems are passive systems that are more effective in hot regions. In addition, the variable air volume (VAV) system, combined VAV–energy recovery ventilation (ERV), and combined VAV–underfloor air distribution (UFAD) are active systems that can convert hot and humid outdoor temperatures to create comfortable indoor environments. In cold and cool regions, passive systems that prevent heat loss, such as high-R insulation walls and windows, are effective. Active systems that utilize outdoor air or ventilation include the combined VAV-economizer, the active chilled beam with dedicated outdoor air system (DOAS), and the combined VAV-ERV. For renewable energy systems, the ground source heat pump (GSHP) is more effective. Selecting energy saving technologies that are suitable for the surrounding environment, and selecting design strategies that are appropriate for a given climate, are very important for the design of high-performance buildings globally.


Author(s):  
Xiaohan Tao ◽  
Jianmin Pang ◽  
Jinlong Xu ◽  
Yu Zhu

AbstractThe heterogeneous many-core architecture plays an important role in the fields of high-performance computing and scientific computing. It uses accelerator cores with on-chip memories to improve performance and reduce energy consumption. Scratchpad memory (SPM) is a kind of fast on-chip memory with lower energy consumption compared with a hardware cache. However, data transfer between SPM and off-chip memory can be managed only by a programmer or compiler. In this paper, we propose a compiler-directed multithreaded SPM data transfer model (MSDTM) to optimize the process of data transfer in a heterogeneous many-core architecture. We use compile-time analysis to classify data accesses, check dependences and determine the allocation of data transfer operations. We further present the data transfer performance model to derive the optimal granularity of data transfer and select the most profitable data transfer strategy. We implement the proposed MSDTM on the GCC complier and evaluate it on Sunway TaihuLight with selected test cases from benchmarks and scientific computing applications. The experimental result shows that the proposed MSDTM improves the application execution time by 5.49$$\times$$ × and achieves an energy saving of 5.16$$\times$$ × on average.


2021 ◽  
Vol 244 ◽  
pp. 114507
Author(s):  
Olusola Bamisile ◽  
Hailian Jing ◽  
Michael Adedeji ◽  
Jian Li ◽  
Paul O.K. Anane ◽  
...  

Author(s):  
Indar Sugiarto ◽  
Doddy Prayogo ◽  
Henry Palit ◽  
Felix Pasila ◽  
Resmana Lim ◽  
...  

This paper describes a prototype of a computing platform dedicated to artificial intelligence explorations. The platform, dubbed as PakCarik, is essentially a high throughput computing platform with GPU (graphics processing units) acceleration. PakCarik is an Indonesian acronym for Platform Komputasi Cerdas Ramah Industri Kreatif, which can be translated as “Creative Industry friendly Intelligence Computing Platform”. This platform aims to provide complete development and production environment for AI-based projects, especially to those that rely on machine learning and multiobjective optimization paradigms. The method for constructing PakCarik was based on a computer hardware assembling technique that uses commercial off-the-shelf hardware and was tested on several AI-related application scenarios. The testing methods in this experiment include: high-performance lapack (HPL) benchmarking, message passing interface (MPI) benchmarking, and TensorFlow (TF) benchmarking. From the experiment, the authors can observe that PakCarik's performance is quite similar to the commonly used cloud computing services such as Google Compute Engine and Amazon EC2, even though falls a bit behind the dedicated AI platform such as Nvidia DGX-1 used in the benchmarking experiment. Its maximum computing performance was measured at 326 Gflops. The authors conclude that PakCarik is ready to be deployed in real-world applications and it can be made even more powerful by adding more GPU cards in it.


2019 ◽  
Vol 214 ◽  
pp. 08009 ◽  
Author(s):  
Matthias J. Schnepf ◽  
R. Florian von Cube ◽  
Max Fischer ◽  
Manuel Giffels ◽  
Christoph Heidecker ◽  
...  

Demand for computing resources in high energy physics (HEP) shows a highly dynamic behavior, while the provided resources by the Worldwide LHC Computing Grid (WLCG) remains static. It has become evident that opportunistic resources such as High Performance Computing (HPC) centers and commercial clouds are well suited to cover peak loads. However, the utilization of these resources gives rise to new levels of complexity, e.g. resources need to be managed highly dynamically and HEP applications require a very specific software environment usually not provided at opportunistic resources. Furthermore, aspects to consider are limitations in network bandwidth causing I/O-intensive workflows to run inefficiently. The key component to dynamically run HEP applications on opportunistic resources is the utilization of modern container and virtualization technologies. Based on these technologies, the Karlsruhe Institute of Technology (KIT) has developed ROCED, a resource manager to dynamically integrate and manage a variety of opportunistic resources. In combination with ROCED, HTCondor batch system acts as a powerful single entry point to all available computing resources, leading to a seamless and transparent integration of opportunistic resources into HEP computing. KIT is currently improving the resource management and job scheduling by focusing on I/O requirements of individual workflows, available network bandwidth as well as scalability. For these reasons, we are currently developing a new resource manager, called TARDIS. In this paper, we give an overview of the utilized technologies, the dynamic management, and integration of resources as well as the status of the I/O-based resource and job scheduling.


Sign in / Sign up

Export Citation Format

Share Document