Constant ratio timelike curves in pseudo-Galilean 3-space \mathbb{G}_{3}^{1}

2018 ◽  
Vol 27 (1) ◽  
pp. 57-62
Author(s):  
İlim Kişi ◽  
◽  
Sezgin Büyükkütük ◽  
Günay Öztürk ◽  
◽  
...  

In this paper, we consider unit speed timelike curves in pseudo-Galilean 3-space \mathbb{G}_{3}^{1} as curves whose position vectors can be written as linear combination of their Serret-Frenet vectors. We obtain some results of constant ratio curves and give an example of these curves. Further, we show that there is no T-constant curve and we obtain some results of N-constant type of curves in pseudo-Galilean 3-space \mathbb{G}_{3}^{1}.

1961 ◽  
Author(s):  
Milton H. Hodge ◽  
Morris J. Crawford ◽  
Mary L. Piercy

1987 ◽  
Vol 26 (06) ◽  
pp. 248-252 ◽  
Author(s):  
M. J. van Eenige ◽  
F. C. Visser ◽  
A. J. P. Karreman ◽  
C. M. B. Duwel ◽  
G. Westera ◽  
...  

Optimal fitting of a myocardial time-activity curve is accomplished with a monoexponential plus a constant, resulting in three parameters: amplitude and half-time of the monoexponential and the constant. The aim of this study was to estimate the precision of the calculated parameters. The variability of the parameter values as a function of the acquisition time was studied in 11 patients with cardiac complaints. Of the three parameters the half-time value varied most strongly with the acquisition time. An acquisition time of 80 min was needed to keep the standard deviation of the half-time value within ±10%. To estimate the standard deviation of the half-time value as a function of the parameter values, of the noise content of the time-activity curve and of the acquisition time, a model experiment was used. In most cases the SD decreased by 50% if the acquisition time was increased from 60 to 90 min. A low amplitude/constant ratio and a high half-time value result in a high SD of the half-time value. Tables are presented to estimate the SD in a particular case.


1989 ◽  
Author(s):  
Shimon Ullman ◽  
Ronen Basri
Keyword(s):  

Author(s):  
Ujjal Purkayastha ◽  
Vipin Sudevan ◽  
Rajib Saha

Abstract Recently, the internal-linear-combination (ILC) method was investigated extensively in the context of reconstruction of Cosmic Microwave Background (CMB) temperature anisotropy signal using observations obtained by WMAP and Planck satellite missions. In this article, we, for the first time, apply the ILC method to reconstruct the large scale CMB E mode polarization signal, which could probe the ionization history, using simulated observations of 15 frequency CMB polarization maps of future generation Cosmic Origin Explorer (COrE) satellite mission. We find that the clean power spectra, from the usual ILC, are strongly biased due to non zero CMB-foregrounds chance correlations. In order to address the issues of bias and errors we extend and improve the usual ILC method for CMB E mode reconstruction by incorporating prior information of theoretical E mode angular power spectrum while estimating the weights for linear combination of input maps (Sudevan & Saha 2018b). Using the E mode covariance matrix effectively suppresses the CMB-foreground chance correlation power leading to an accurate reconstruction of cleaned CMB E mode map and its angular power spectrum. We compare the performance of the usual ILC and the new method over large angular scales and show that the later produces significantly statistically improved results than the former. The new E mode CMB angular power spectrum contains neither any significant negative bias at the low multipoles nor any positive foreground bias at relatively higher mutlipoles. The error estimates of the cleaned spectrum agree very well with the cosmic variance induced error.


2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Y. Sultan Abylkairov ◽  
Omar Darwish ◽  
J. Colin Hill ◽  
Blake D. Sherwin
Keyword(s):  

Author(s):  
Xiaoyan Zhang ◽  
Donglei Du ◽  
Gregory Gutin ◽  
Qiaoxia Ming ◽  
Jian Sun

2020 ◽  
Vol 10 (1) ◽  
pp. 66-75
Author(s):  
Byungsoo Moon

Abstract In this paper, we study the existence of peaked traveling wave solution of the generalized μ-Novikov equation with nonlocal cubic and quadratic nonlinearities. The equation is a μ-version of a linear combination of the Novikov equation and Camassa-Hom equation. It is found that the equation admits single peaked traveling wave solutions.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2525
Author(s):  
Kamil Krasuski ◽  
Damian Wierzbicki

In the field of air navigation, there is a constant pursuit for new navigation solutions for precise GNSS (Global Navigation Satellite System) positioning of aircraft. This study aims to present the results of research on the development of a new method for improving the performance of PPP (Precise Point Positioning) positioning in the GPS (Global Positioning System) and GLONASS (Globalnaja Nawigacionnaja Sputnikovaya Sistema) systems for air navigation. The research method is based on a linear combination of individual position solutions from the GPS and GLONASS systems. The paper shows a computational scheme based on the linear combination for geocentric XYZ coordinates of an aircraft. The algorithm of the new research method uses the weighted mean method to determine the resultant aircraft position. The research method was tested on GPS and GLONASS kinematic data from an airborne experiment carried out with a Seneca Piper PA34-200T aircraft at the Mielec airport. A dual-frequency dual-system GPS/GLONASS receiver was placed on-board the plane, which made it possible to record GNSS observations, which were then used to calculate the aircraft’s position in CSRS-PPP software. The calculated XYZ position coordinates from the CSRS-PPP software were then used in the weighted mean model’s developed optimization algorithm. The measurement weights are a function of the number of GPS and GLONASS satellites and the inverse of the mean error square. The obtained coordinates of aircraft from the research model were verified with the RTK-OTF solution. As a result of the research, the presented solution’s accuracy is better by 11–87% for the model with a weighting scheme as a function of the inverse of the mean error square. Moreover, using the XYZ position from the RTKLIB program, the research method’s accuracy increases from 45% to 82% for the model with a weighting scheme as a function of the inverse of the square of mean error. The developed method demonstrates high efficiency for improving the performance of GPS and GLONASS solutions for the PPP measurement technology in air navigation.


Sign in / Sign up

Export Citation Format

Share Document