scholarly journals Control of characteristics of closed gas turbine plants of submarines propulsion complexes

Author(s):  
В.Т. Матвеенко ◽  
А.В. Дологлонян ◽  
В.А. Очеретяный

Подводная техника особенно нужна при работе и снабжении подводными судами объектов на Арктическом шельфе вдоль Северного морского пути, связанного с преодолением ледовых полей. Среди различных типов энергетических установок для подводной техники перспективны замкнутые газотурбинные установки (ЗГТУ), способные в одноконтурном варианте работать на углеводородных типах топлива. В качестве окислителя можно использовать воздух, который на судах можно хранить в сжатом виде. В этом случае не нужна специальная береговая инфраструктура, ограничивающая дальность плавания подводной техники. За основу базовой схемы ЗГТУ принят газотурбинный двигатель (ГТД) с регенерацией (Р) теплоты, как более экономичный по сравнению с ГТД простого цикла, и схемы которого характерны для микрогазотурбинных двигателей. Также рассмотрены ЗГТУ с турбокомпрессорным утилизатором (ТКУ) и регенерацией теплоты как более экономичные и обладающие удельной мощностью в 1,3…1,5 раза большей, чем в ЗГТУ с Р. Определены характеристики ЗГТУ на переменных режимах, так как подводная техника используется при исследовательских, технологических и транспортных работах при частичных нагрузках и различных видах нагружения. Для улучшения экономичности ЗГТУ на режимах частичного нагружения предложено применить регулируемый сопловой аппарат (РСА) в свободной силовой турбине. На частичных нагрузках посредством РСА можно перераспределить теплоперепад между турбинами, изменить расход газа через турбины, приблизить регулирование к количественному типу. При этом наблюдается увеличение эффективного КПД относительно других способов регулирования при уменьшении мощности двигателя и рост начальной температуры газа, который приближает параметры рабочего цикла двигателя к номинальным значениям. Underwater equipment is especially needed when operating and supplying objects by submarines on the Arctic shelf along the Northern Sea Route associated with ice fields overcoming. Among the various types of power plants for underwater equipment, closed gas turbine plants (CGTP) are promising, capable of operating in a single-circuit version on hydrocarbon types of fuel. Air can be used as an oxidizing agent, which can be stored compressed on ships. In this case, there is no need for a special coastal infrastructure that limits the range of navigation of underwater equipment. A gas turbine engine (GTE) with heat regeneration (R) is adopted as the basis for the basic scheme of CGTP, as it is more economical in comparison with a simple cycle GTE, and the schemes of which are typical for microgas turbine engines. Also considered are CGTP with a turbocompressor utilizer (TCU) and heat regeneration as more economical and having a specific power 1.3...1.5 times higher than in CGTP with R. The characteristics of CGTP in variable modes are determined, since underwater equipment is used in research, technological and transport works at partial modes and various types of loading. To improve the efficiency of CGTP in partial loading modes, it is proposed to use a variable area nozzle (VAN) in a free power turbine. At partial loads, by means of VAN, it is possible to redistribute the heat drop between the turbines, change the gas flow rate through the turbines, and bring the regulation closer to the quantitative type. At the same time, there is an increase in the effective efficiency relative to other control methods with a decrease in engine power and an increase in the initial gas temperature, which brings the parameters of the engine operating cycle closer to the nominal values.

Author(s):  
A. V. Sudarev ◽  
Y. I. Zakharov ◽  
E. D. Vlnogradov ◽  
L. S. Butovsky ◽  
E. A. G. Ranovskaya

Initial results of the first step (at Pa = 0.11–0.12 MPa) of an experimental investigation of the basic parameters of full-scale, micro-flame double-zone combustors with flame tubes are presented. This combustion chamber is developed for a 2.5 MW advanced ceramic gas turbine unit. (Sudarev, et al., 1991). This engine, when working at the design operation conditions, has an efficiency range of 41–46%, which is a function of using either intecooling or a heat regeneration scheme. The efficiency is the result of increasing the gas temperature to a maximum turbine inlet temperature of 1250°C and a 2.5 MW pressure ratio of 29. With such high initial parameters of the working media, the problem of nitrogen oxide emissions reduction assumes paramount importance. The objective of the paper is to develop a combustor which would ensure NOx emissions at the design conditions not above 75 mg/Nm3 (at 15% 02) due to application of a double-stage working process of pre-mixture firing. Specific features of fuel burn-up, formation of pollutants at combustion, dependencies of combustor characteristics and upgraded algorithm of combustor loading are also shown.


2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


2016 ◽  
Vol 138 (06) ◽  
pp. 38-43
Author(s):  
Lee S. Langston

This article discusses various fields where gas turbines can play a vital role. Building engines for commercial jetliners is the largest market segment for the gas turbine industry; however, it is far from being the only one. One 2015 military gas turbine program of note was the announcement of an U.S. Air Force competition for an innovative design of a small turbine engine, suitable for a medium-size drone aircraft. The electrical power gas turbine market experienced a sharp boom and bust from 2000 to 2002 because of the deregulation of many electric utilities. Since then, however, the electric power gas turbine market has shown a steady increase, right up to present times. Coal-fired plants now supply less than 5 percent of the electrical load, having been largely replaced by new natural gas-fired gas turbine power plants. Working in tandem with renewable energy power facilities, the new fleet of gas turbines is expected to provide reliable, on-demand electrical power at a reasonable cost.


2021 ◽  
Author(s):  
Farshid Zabihian

The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H₂, CO₂, CO, and N₂. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique feature of these models is that they are developed based on similar assumptions and run at similar conditions; therefore, their results can be compared. This work demonstrates that, although utilization of fossil fuels for power generation is inevitable, at least in the short- and mid-term future, it is possible and practical to carry out such utilization more efficiently and in an environmentally friendlier manner.


Author(s):  
Joe D. Craig ◽  
Carol R. Purvis

A new generation of small scale (less than 20 MWe) biomass fueled, power plants are being developed based on a gas turbine (Brayton cycle) prime mover. These power plants are expected to increase the efficiency and lower the cost of generating power from fuels such as wood. The new power plants are also expected to economically utilize annual plant growth materials (such as rice hulls, cotton gin trash, nut shells, and various straws, grasses, and animal manures) that are not normally considered as fuel for power plants. This paper summarizes the new power generation concept with emphasis on the engineering challenges presented by the gas turbine component.


Author(s):  
D. S. Kalabuhov ◽  
V. A. Grigoriev ◽  
A. O. Zagrebelnyi ◽  
D. S. Diligensky

Abstract The article describes the adjusted parametrical turboshaft gas turbine engine mass model that is applied for the helicopter engine operating cycle parameters optimization during a conceptual engineering. During the operation of the take-off mass, which indirectly characterizes the cost of materials for the entire designed aircraft system, one of the main components which determines the coordination of the helicopter and its engine parameters is a mass of the gas turbine power unit. Moreover, during the parametrical studies the designed mass of a power unit should be defined by the parameters of a gas turbine engine; however, this type of dependencies is not that well enough studied for today. Therefore the evaluation of the dependency between the engine mass and its operational parameters is performed by using either generalized statistical data for existing designs or by parametrical mass models since there is nothing more precise up to date. However as new types of gas turbine engines appear it is required to update the values of parametrical model coefficients. This article describes the influence of different cooling system units on the engine mass and also clarifies the coefficients that specify the engine mass advance by introducing the structural-technological measures. The last one is highly dependent on the designed gas turbine engine (GTE) serial production year. It also has been proposed to represent some coefficients that are used in the model as dependencies of the main operational parameters. This has allowed to perform the parametrical study and to gain predictive solutions in correspondence to the modern engine design level.


Author(s):  
Allan J. Volponi

Engine diagnostic practices are as old as the gas turbine itself. Monitoring and analysis methods have progressed in sophistication over the past 6 decades as the gas turbine evolved in form and complexity. While much of what will be presented here may equally apply to both stationary power plants and aero-engines, the emphasis will be on aero propulsion. Beginning with primarily empirical methods centering around monitoring the mechanical integrity of the machine, the evolution of engine diagnostics has benefited from advances in sensing, electronic monitoring devices, increased fidelity in engine modeling and analytical methods. The primary motivation in this development is, not surprisingly, cost. The ever increasing cost of fuel, engine prices, spare parts, maintenance and overhaul, all contribute to the cost of an engine over its entire life cycle. Diagnostics can be viewed as a means to mitigate risk in decisions that impact operational integrity. This can have a profound impact on safety, such as In-Flight Shut Downs (IFSD) for aero applications, (outages for land based applications) and economic impact caused by Unscheduled Engine Removals (UERs), part life, maintenance and overhaul and the overall logistics of maintaining an aircraft fleet or power generation plants. This paper will review some of the methods used in the preceding decades to address these issues, their evolution to current practices and some future trends. While several different monitoring and diagnostic systems will be addressed, the emphasis in this paper will be centered on those dealing with the aero-thermodynamic performance of the engine.


Author(s):  
Robert G. Laycock ◽  
Thomas H. Fletcher

Time-dependent deposition characteristics of fine coal flyash were measured in the Turbine Accelerated Deposition Facility (TADF) at Brigham Young University. Two samples of subbituminous coal fly ash, with mass mean diameters of 3 and 13 μm, were entrained in a hot gas flow with a gas temperature of 1250°C and Mach number of 0.25. A nickel base super alloy metal coupon approximately 0.3 cm thick was held in a hot particle-laden gas stream to simulate deposition in a gas turbine. Tests were conducted with deposition times of 20, 40, and 60 minutes. Capture efficiencies and surface roughness characteristics (e.g., Ra) were obtained at different times. Capture efficiency increased exponentially with time while Ra increased linearly with time. The increased deposition with time caused the surface temperature of the deposit to increase. The increased surface temperature caused more softening, increasing the propensity for impacting particles to stick to the surface. These data are important for improving models of deposition in turbines from syngas flows.


Author(s):  
Sandro Barros Ferreira ◽  
Pericles Pilidis

The use of biomass as gas turbine combined cycle fuels is broadly seen as one of the alternatives to diminish greenhouse gas emissions, mainly CO2, due to the efficiency delivered by such systems and the renewable characteristic of biomass itself. Integrated gasification cycles, BIGGT, are the current technology available; however the gasification system severely penalizes the power plant in terms of efficiency and demands modifications in the engine to accommodate the large fuel mass flow. This gives an opportunity to improvements in the current technologies and implementation of new ones. This paper intends to analyze new alternatives to the use of solid fuels in gas turbines, from the economical point of view, through the use of external combustion, EFGT, discussing its advantages and limitations over the current technology. The results show that both EFGT and BIGGT technologies are economically competitive with the current natural gas fired gas turbines. However, BIGGT power plants are still in pilot scale and the EFGT plants need further technological development. Thermodynamically speaking, the inherently recuperative characteristic of the EFGT gas turbine engine makes it well suited to the biomass market. The thermal efficiency of this cycle is higher than the BIGGT system. Furthermore, its fuel flexibility and negligible pre-treatmet is another advantage that makes it an interesting option for the Brazilian market.


Sign in / Sign up

Export Citation Format

Share Document