scholarly journals Generalized Stirling Permutations and Forests: Higher-Order Eulerian and Ward Numbers

10.37236/4814 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
J. Fernando Barbero G. ◽  
Jesús Salas ◽  
Eduardo J.S. Villaseñor

We define a new family of generalized Stirling permutations that can be interpreted in terms of ordered trees and forests. We prove that the number of generalized Stirling permutations with a fixed number of ascents is given by a natural three-parameter generalization of the well-known Eulerian numbers. We give the generating function for this new class of numbers and, in the simplest cases, we find closed formulas for them and the corresponding row polynomials. By using a non-trivial involution our generalized Eulerian numbers can be mapped onto a family of generalized Ward numbers, forming a Riordan inverse pair, for which we also provide a combinatorial interpretation.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran ◽  
Deena Al-Kadi

The purpose of this paper is to construct a unified generating function involving the families of the higher-order hypergeometric Bernoulli polynomials and Lagrange–Hermite polynomials. Using the generating function and their functional equations, we investigate some properties of these polynomials. Moreover, we derive several connected formulas and relations including the Miller–Lee polynomials, the Laguerre polynomials, and the Lagrange Hermite–Miller–Lee polynomials.



10.37236/564 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Toufik Mansour ◽  
Matthias Schork ◽  
Mark Shattuck

A new family of generalized Stirling and Bell numbers is introduced by considering powers $(VU)^n$ of the noncommuting variables $U,V$ satisfying $UV=VU+hV^s$. The case $s=0$ (and $h=1$) corresponds to the conventional Stirling numbers of second kind and Bell numbers. For these generalized Stirling numbers, the recursion relation is given and explicit expressions are derived. Furthermore, they are shown to be connection coefficients and a combinatorial interpretation in terms of statistics is given. It is also shown that these Stirling numbers can be interpreted as $s$-rook numbers introduced by Goldman and Haglund. For the associated generalized Bell numbers, the recursion relation as well as a closed form for the exponential generating function is derived. Furthermore, an analogue of Dobinski's formula is given for these Bell numbers.



Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 233
Author(s):  
Daeyeoul Kim ◽  
Yilmaz Simsek

In this paper, we further study the generating function involving a variety of special numbers and ploynomials constructed by the second author. Applying the Mellin transformation to this generating function, we define a new class of zeta type functions, which is related to the interpolation functions of the Apostol–Bernoulli polynomials, the Bernoulli polynomials, and the Euler polynomials. This new class of zeta type functions is related to the Hurwitz zeta function, the alternating Hurwitz zeta function, and the Lerch zeta function. Furthermore, by using these functions, we derive some identities and combinatorial sums involving the Bernoulli numbers and polynomials and the Euler numbers and polynomials.



2019 ◽  
Vol 19 (11) ◽  
pp. 944-956 ◽  
Author(s):  
Oscar Martínez-Santiago ◽  
Yovani Marrero-Ponce ◽  
Ricardo Vivas-Reyes ◽  
Mauricio E.O. Ugarriza ◽  
Elízabeth Hurtado-Rodríguez ◽  
...  

Background: Recently, some authors have defined new molecular descriptors (MDs) based on the use of the Graph Discrete Derivative, known as Graph Derivative Indices (GDI). This new approach about discrete derivatives over various elements from a graph takes as outset the formation of subgraphs. Previously, these definitions were extended into the chemical context (N-tuples) and interpreted in structural/physicalchemical terms as well as applied into the description of several endpoints, with good results. Objective: A generalization of GDIs using the definitions of Higher Order and Mixed Derivative for molecular graphs is proposed as a generalization of the previous works, allowing the generation of a new family of MDs. Methods: An extension of the previously defined GDIs is presented, and for this purpose, the concept of Higher Order Derivatives and Mixed Derivatives is introduced. These novel approaches to obtaining MDs based on the concepts of discrete derivatives (finite difference) of the molecular graphs use the elements of the hypermatrices conceived from 12 different ways (12 events) of fragmenting the molecular structures. The result of applying the higher order and mixed GDIs over any molecular structure allows finding Local Vertex Invariants (LOVIs) for atom-pairs, for atoms-pairs-pairs and so on. All new families of GDIs are implemented in a computational software denominated DIVATI (acronym for Discrete DeriVAtive Type Indices), a module of KeysFinder Framework in TOMOCOMD-CARDD system. Results: QSAR modeling of the biological activity (Log 1/K) of 31 steroids reveals that the GDIs obtained using the higher order and mixed GDIs approaches yield slightly higher performance compared to previously reported approaches based on the duplex, triplex and quadruplex matrix. In fact, the statistical parameters for models obtained with the higher-order and mixed GDI method are superior to those reported in the literature by using other 0-3D QSAR methods. Conclusion: It can be suggested that the higher-order and mixed GDIs, appear as a promissory tool in QSAR/QSPRs, similarity/dissimilarity analysis and virtual screening studies.



Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 908
Author(s):  
Perla Celis ◽  
Rolando de la Cruz ◽  
Claudio Fuentes ◽  
Héctor W. Gómez

We introduce a new class of distributions called the epsilon–positive family, which can be viewed as generalization of the distributions with positive support. The construction of the epsilon–positive family is motivated by the ideas behind the generation of skew distributions using symmetric kernels. This new class of distributions has as special cases the exponential, Weibull, log–normal, log–logistic and gamma distributions, and it provides an alternative for analyzing reliability and survival data. An interesting feature of the epsilon–positive family is that it can viewed as a finite scale mixture of positive distributions, facilitating the derivation and implementation of EM–type algorithms to obtain maximum likelihood estimates (MLE) with (un)censored data. We illustrate the flexibility of this family to analyze censored and uncensored data using two real examples. One of them was previously discussed in the literature; the second one consists of a new application to model recidivism data of a group of inmates released from the Chilean prisons during 2007. The results show that this new family of distributions has a better performance fitting the data than some common alternatives such as the exponential distribution.



2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Sunil Kumar Sharma ◽  
Waseem A. Khan ◽  
Serkan Araci ◽  
Sameh S. Ahmed

Abstract Recently, Kim and Kim (Russ. J. Math. Phys. 27(2):227–235, 2020) have studied new type degenerate Bernoulli numbers and polynomials by making use of degenerate logarithm. Motivated by (Kim and Kim in Russ. J. Math. Phys. 27(2):227–235, 2020), we consider a special class of polynomials, which we call a new type of degenerate Daehee numbers and polynomials of the second kind. By using their generating function, we derive some new relations including the degenerate Stirling numbers of the first and second kinds. Moreover, we introduce a new type of higher-order degenerate Daehee polynomials of the second kind. We also derive some new identities and properties of this type of polynomials.



Author(s):  
Muhammad Uzair Awan ◽  
Muhammad Zakria Javed ◽  
Michael Th. Rassias ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

AbstractA new generalized integral identity involving first order differentiable functions is obtained. Using this identity as an auxiliary result, we then obtain some new refinements of Simpson type inequalities using a new class called as strongly (s, m)-convex functions of higher order of $$\sigma >0$$ σ > 0 . We also discuss some interesting applications of the obtained results in the theory of means. In last we present applications of the obtained results in obtaining Simpson-like quadrature formula.



1994 ◽  
Vol 3 (4) ◽  
pp. 435-454 ◽  
Author(s):  
Neal Brand ◽  
Steve Jackson

In [11] it is shown that the theory of almost all graphs is first-order complete. Furthermore, in [3] a collection of first-order axioms are given from which any first-order property or its negation can be deduced. Here we show that almost all Steinhaus graphs satisfy the axioms of almost all graphs and conclude that a first-order property is true for almost all graphs if and only if it is true for almost all Steinhaus graphs. We also show that certain classes of subgraphs of vertex transitive graphs are first-order complete. Finally, we give a new class of higher-order axioms from which it follows that large subgraphs of specified type exist in almost all graphs.



2018 ◽  
Vol 99 (03) ◽  
pp. 353-361
Author(s):  
MEGHA GOYAL

We give the generating function of split$(n+t)$-colour partitions and obtain an analogue of Euler’s identity for split$n$-colour partitions. We derive a combinatorial relation between the number of restricted split$n$-colour partitions and the function$\unicode[STIX]{x1D70E}_{k}(\unicode[STIX]{x1D707})=\sum _{d|\unicode[STIX]{x1D707}}d^{k}$. We introduce a new class of split perfect partitions with$d(a)$copies of each part$a$and extend the work of Agarwal and Subbarao [‘Some properties of perfect partitions’,Indian J. Pure Appl. Math 22(9) (1991), 737–743].



Sign in / Sign up

Export Citation Format

Share Document