Rule and Data Driven Strip Coiling Temperature Model in Laminar Cooling Process

2012 ◽  
Vol 38 (11) ◽  
pp. 1861 ◽  
Author(s):  
Jin-Xiang PIAN ◽  
Tian-You CHAI ◽  
Jie-Jia LI
2013 ◽  
Vol 756-759 ◽  
pp. 4377-4381
Author(s):  
Jing Hou ◽  
Jin Xiang Pian ◽  
Yan Ling Sun ◽  
Ke Xu

In order to improve the control accuracy of the coiling temperature of strip in the laminar cooling process when working condition is varying, an intelligent setting method of the cooling water volume is researched in this paper. The strip coiling temperature mechanism model is built firstly. Secondly, the key model parameters are identified with case-based reasoning (CBR) technology to improve the model accuracy. Lastly, the cooling water volume setting method based the model is proposed where disturbance input method is applied. The simulation result showed that the proposed method can improve the strip coiling temperature accuracy when the operation condition is changing. The strip coiling temperature accuracy can be improved due to the CBR technology which can adjust the key model parameters according to the varying operation condition. So, the setting values based the improved model are adjusted with the changing working condition, with self-adaptive ability.


2014 ◽  
Vol 900 ◽  
pp. 647-650
Author(s):  
Yu Qing Zheng ◽  
Jing Yu Cui

The temperature distribution of the hot-rolled strip in the ROT cooling process was calculated and analyzed using ABAQUS in this paper. The complicated heat transfer coefficients of hot strip considering the position effects of top and bottom nozzles, and the non-uniform heat transfer situation along the width direction were defined by user subroutine. The simulation results were in good correlation with test results. It’s helpful for further analysis to improve the temperature distribution uniformity and the simulation accuracy for FE model, and guide the on-site production.


2014 ◽  
Vol 633-634 ◽  
pp. 679-683
Author(s):  
En Yang Liu ◽  
Wen Peng ◽  
Ning Cao ◽  
Si Rong Yu ◽  
Jun Xu ◽  
...  

Coiling temperature of hot rolled strip is one of the important parameters which affect performances of hot rolled strip. The control of coiling temperature is highly nonlinear and time-varying. Based on the laminar cooling control system of a hot rolling plant, a coiling temperature prediction model based on BP neural network was established. Many factors which affect coiling temperature control were taken into account, and the BP neural network was trained by actual production data. The simulation was carried out, which indicates that coiling temperature can be predicted precisely, and the BP neural network model has the prospect of online application.


2014 ◽  
Vol 988 ◽  
pp. 290-295
Author(s):  
Zhi Min Zhang ◽  
Feng Qin Wang ◽  
Fei Li ◽  
Shu Zhi Wang ◽  
Xiao Jiang

Coiling temperature, finish rolling temperature and running speed of ZSAC1 strip during U-type cooling and number of valves which had been turned on were analyzed in order to find out the reason of low coiling temperature at tail of ZSAC1 strip in U-type cooling process. Results of research showed that running speed of strip and finish rolling temperature were main factors affecting accuracy of coiling temperature. Coiling temperature decreased with the increase of running speed of strip. Coiling temperature fluctuation would occur at the same part of strip when finish rolling temperature increased or decreased. Holding rolling speed and rolling temperature of strip stably can improve accuracy of coiling temperature during downstream U-type cooling.


2012 ◽  
Vol 706-709 ◽  
pp. 2078-2083
Author(s):  
Xiao Hui Cai ◽  
Zhen Yu Liu ◽  
Guo Dong Wang

The precipitation of vanadium takes place mainly in ferrite by interphase precipitation or nucleation on dislocation line, which makes sense for the industry production due to the precipitation strengthening. The objective is to analysize the cooling process of V-steels to exert the precipitation strengthening of vanadium. The steels with 0.09%C-0.055%N/0.0107%N/0.0168%N/0.0193%N-0.08%V/0.085V steel are the researched steel grades. Using solid solubility products model and thermodynamic equation, the full solid solution temperature, nucleation rate curve and PTT curve of precipitation process are calculated. The effect of nitrogen on the precipitation behaviour of V(C,N) in γ and the precipitation of V(C,N) in α are simulated. Based on the calculation results the trial process is determined. The laboratorial trials are carried out with ultra fast cooling. The precipitate particles are observed by TEM. The solid solution amount increases monotonously and the size of precipitate particle decreases with the nitrogen content. The solid solution temperature of 0.055%N, 0.0107%N, 0.0168%N and 0.0193%N are 977.0°C, 1028.0°C, 1062.3 and 1078.9°C respectively. The laboratorial trial results shows that the tensile strength is improved about 100 MPa due to the precipitation strengthening. The relationship between the coiling temperature and the strength is parabolic curve downward and the relationship between the coiling temperature and the elongation is parabolic curve upward. This calculation can determine both the proper nitrogen content and the optimal cooling process. The trial results proves this method is feasible and efficiency.


Sign in / Sign up

Export Citation Format

Share Document