Cooling Process for Precipitation Strengthening of Vanadium in Ferrite

2012 ◽  
Vol 706-709 ◽  
pp. 2078-2083
Author(s):  
Xiao Hui Cai ◽  
Zhen Yu Liu ◽  
Guo Dong Wang

The precipitation of vanadium takes place mainly in ferrite by interphase precipitation or nucleation on dislocation line, which makes sense for the industry production due to the precipitation strengthening. The objective is to analysize the cooling process of V-steels to exert the precipitation strengthening of vanadium. The steels with 0.09%C-0.055%N/0.0107%N/0.0168%N/0.0193%N-0.08%V/0.085V steel are the researched steel grades. Using solid solubility products model and thermodynamic equation, the full solid solution temperature, nucleation rate curve and PTT curve of precipitation process are calculated. The effect of nitrogen on the precipitation behaviour of V(C,N) in γ and the precipitation of V(C,N) in α are simulated. Based on the calculation results the trial process is determined. The laboratorial trials are carried out with ultra fast cooling. The precipitate particles are observed by TEM. The solid solution amount increases monotonously and the size of precipitate particle decreases with the nitrogen content. The solid solution temperature of 0.055%N, 0.0107%N, 0.0168%N and 0.0193%N are 977.0°C, 1028.0°C, 1062.3 and 1078.9°C respectively. The laboratorial trial results shows that the tensile strength is improved about 100 MPa due to the precipitation strengthening. The relationship between the coiling temperature and the strength is parabolic curve downward and the relationship between the coiling temperature and the elongation is parabolic curve upward. This calculation can determine both the proper nitrogen content and the optimal cooling process. The trial results proves this method is feasible and efficiency.

Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 878 ◽  
Author(s):  
Qing Wang ◽  
Zhen Li ◽  
Shujie Pang ◽  
Xiaona Li ◽  
Chuang Dong ◽  
...  

High-performance conventional engineering materials (including Al alloys, Mg alloys, Cu alloys, stainless steels, Ni superalloys, etc.) and newly-developed high entropy alloys are all compositionally-complex alloys (CCAs). In these CCA systems, the second-phase particles are generally precipitated in their solid-solution matrix, in which the precipitates are diverse and can result in different strengthening effects. The present work aims at generalizing the precipitation behavior and precipitation strengthening in CCAs comprehensively. First of all, the morphology evolution of second-phase particles and precipitation strengthening mechanisms are introduced. Then, the precipitation behaviors in diverse CCA systems are illustrated, especially the coherent precipitation. The relationship between the particle morphology and strengthening effectiveness is discussed. It is addressed that the challenge in the future is to design the stable coherent microstructure in different solid-solution matrices, which will be the most effective approach for the enhancement of alloy strength.


2016 ◽  
Vol 61 (1) ◽  
pp. 425-432 ◽  
Author(s):  
T. Rzychoń ◽  
B. Dybowski

Magnesium alloys due the low density and good mechanical properties are mainly used in the automotive and aerospace industry. In recent years, magnesium alloys are extensively developed for use in high temperatures (above 120°C). Among these alloys, magnesium alloys containing tin and silicon have large possibilities of application due to the formation of thermally stable intermetallic Mg2Sn and Mg2Si. In this paper the influence of aluminum and heat treatment on the on the microstructure and hardness of Mg-7Sn-5Si alloy is reported. It was found that the microstructure of Mg-7Sn-5Si alloy consist of α-Mg solid solution, Mg2Sn and Mg2Si compounds. Addition of 2 wt% of Al to Mg-7Sn-5Si alloy causes the formation of Al2Sn phase. Moreover, Al dissolves in the α-Mg solid solution. The solution heat-treatment of tested alloys at 500°C for 24 h causes the dissolve the Mg2Sn phase in the α-Mg matrix and spheroidization of Mg2Si compound. The Mg2Si primary crystals are stable at solution temperature. After ageing treatment the precipitation process of equilibrium Mg2Sn phase was found in both alloys. The addition of aluminum has a positive effect on the hardness of Mg-7Sn-5Si alloy. In case of Mg-5Si-7Sn-2Al alloy the highest hardness was obtained for sample aged for 148 h at 250°C (88 HV2), while in case of Al-free alloy the highest hardness is 70 HV for material aged for 148 h at 250°C.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3869
Author(s):  
Yu Liang ◽  
Jun Ma ◽  
Baogang Zhou ◽  
Wei Li

Mechanical anisotropy behaviors are investigated in slightly rolled Inconel718 alloy with string-like δ phase and carbides produced during various solid-solution and aging treatments. A weak anisotropy in the strengths and rupture properties at 650 °C is visible, whereas ductility, i.e., reduction in area (RA) and impact toughness (CVN), presents a sound anisotropy behavior. MC carbides promote the operation of slip systems and thus are conducive to weakening the strength anisotropy. The RA anisotropy mainly stems from high-density δ phase particles that provide more crack nucleation sites and stimulate rapid propagation because of the shorter bridge distance between micro-cracks at the rolling direction. In contrast, CVN anisotropy arises from both δ phase and carbides at a lower solid-solution temperature of 940 °C but only depends on carbides at 980 °C where the δ phase fully dissolves. Apart from dislocation motions operated at room temperature, the activated grain boundary processes are responsible for the weak anisotropy of rupture properties at the elevated temperature. This work provides a guideline for technological applications in the hot working processes for Inconel718 alloys.


2015 ◽  
Vol 817 ◽  
pp. 307-311 ◽  
Author(s):  
Peng Chao Zhang ◽  
Jin Chuan Jie ◽  
Yuan Gao ◽  
Tong Min Wang ◽  
Ting Ju Li

The Cu-Cr and Cu-Cr-Ti alloy plates were prepared by vacuum melting and plastic deformation. The effect of slight Ti element on microstructure and mechanical properties of Cu-Cr alloy was discussed. The result shows that Cr particles with spherical shape precipitated from Cu matrix after aging. Plenty Ti atoms dissolved in the vicinity of Cr particles and there were still parts of solid solution Ti atoms in other regions. Improvements in peak hardness and softening resistance were achieved with the addition of Ti element in Cu-Cr alloy. The addition of 0.1 wt.% Ti element makes Cu-Cr alloy possess tensile strength of 565 MPa and hardness of 185.9 HV after aging at 450 °C for 120 min, which can be attributed to multiple strengthening mechanisms, i.e. work hardening, solid solution strengthening and precipitation strengthening.


2019 ◽  
Vol 38 (2019) ◽  
pp. 892-896 ◽  
Author(s):  
Süleyman Tekeli ◽  
Ijlal Simsek ◽  
Dogan Simsek ◽  
Dursun Ozyurek

AbstractIn this study, the effect of solid solution temperature on microstructure and mechanical properties of the AA7075 alloy after T6 heat treatment was investigated. Following solid solution at five different temperatures for 2 hours, the AA7075 alloy was quenched and then artificially aged at 120∘C for 24 hours. Hardness measurements, microstructure examinations (SEM+EDS, XRD) and tensile tests were carried out for the alloys. The results showed that the increased solid solution temperature led to formation of precipitates in the microstructures and thus caused higher hardness and tensile strength.


2013 ◽  
Vol 756-759 ◽  
pp. 4377-4381
Author(s):  
Jing Hou ◽  
Jin Xiang Pian ◽  
Yan Ling Sun ◽  
Ke Xu

In order to improve the control accuracy of the coiling temperature of strip in the laminar cooling process when working condition is varying, an intelligent setting method of the cooling water volume is researched in this paper. The strip coiling temperature mechanism model is built firstly. Secondly, the key model parameters are identified with case-based reasoning (CBR) technology to improve the model accuracy. Lastly, the cooling water volume setting method based the model is proposed where disturbance input method is applied. The simulation result showed that the proposed method can improve the strip coiling temperature accuracy when the operation condition is changing. The strip coiling temperature accuracy can be improved due to the CBR technology which can adjust the key model parameters according to the varying operation condition. So, the setting values based the improved model are adjusted with the changing working condition, with self-adaptive ability.


2011 ◽  
Vol 189-193 ◽  
pp. 2869-2874 ◽  
Author(s):  
Wen Zhong Song ◽  
Qi Fang ◽  
Hui Ping Ren ◽  
Zi Li Jin ◽  
Hui Chang

The solid solution of the second phase particle and austenite grain growth behavior of the high niobium-containing RE steel was studied by mathematical calculation and extraction replica technique. The purpose of the study was to investigate the effects of Rare Earth La on austenite grain growth and propose an empirical equation for predicting the austenite grain size of RE steel. Austenite grain grows in an exponential law with the increase of heating temperature, while approximately in a parabolic law with the increase of holding time. Results show that the RE steel has good anti-coarsening ability at elevated temperatures. When soaking temperature is lower than 1250°C , AGS and growth rate are small for high niobium steel, but soaking temperature is lower than 1220°C , AGS and growth rate are small for RE steel. RE La can promote solid solution of second-phase particles Nb(C, N), the solution temperature decrease 30°C than high niobium steel.


OENO One ◽  
1987 ◽  
Vol 21 (2) ◽  
pp. 81
Author(s):  
M. Nikov

<p style="text-align: justify;">L'étude est menée avec le cépage Merlot conduit en forme haute et à une distance de 3,40 x 1,20 m. Les vignes supportent des charges individuelles de 26, 32, 38 ... jusqu'à 62 bourgeons par cep. La relation entre le nombre d'yeux et le rendement par souche se caractérise par une courbe parabolique avec un maximum autour de 50 bourgeons par cep. L'augmentation de charge au-delà de l'optimum exerce une influence inhibitrice sur la croissance des rameaux individuels depuis la première année. Le rapport entre la surface foliaire et la production représente un facteur essentiel pour la qualité du raisin.</p><p style="text-align: justify;">+++</p><p style="text-align: justify;">The study involves Merlot variety trained with an high trunk and a 3,40 x 1,20 m spacing. The vines support individual pruning levels of 26, 32, 38 ... up to 62 buds/vine. The relationship between bud number and yield per vine is characterized by a parabolic curve with a maximum around 50 buds/vine. The increase in pruning level beyond the optimum induces an inhibitory effect on single shoot growth since the first year. The leaf area : yield ratio represents a primary factor of grape quality.</p>


Sign in / Sign up

Export Citation Format

Share Document