Aging failure protection for integrated circuit based on spatio-temporal redundancy

2013 ◽  
Vol 27 (1) ◽  
pp. 38-44
Author(s):  
Luming Yan ◽  
Huaguo Liang ◽  
Zhengfeng Huang
Author(s):  
Prasanga Dhungel ◽  
Prashant Tandan ◽  
Sandesh Bhusal ◽  
Sobit Neupane ◽  
Subarna Shakya

We present a new approach to video compression for video surveillance by refining the shortcomings of conventional approach and substitute each traditional component with their neural network counterpart. Our proposed work consists of motion estimation, compression and compensation and residue compression, learned end-to-end to minimize the rate-distortion trade off. The whole model is jointly optimized using a single loss function. Our work is based on a standard method to exploit the spatio-temporal redundancy in video frames to reduce the bit rate along with the minimization of distortions in decoded frames. We implement a neural network version of conventional video compression approach and encode the redundant frames with lower number of bits. Although, our approach is more concerned toward surveillance, it can be extended easily to general purpose videos too. Experiments show that our technique is efficient and outperforms standard MPEG encoding at comparable bitrates while preserving the visual quality.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Antik Mallick ◽  
Mohammad Khairul Bashar ◽  
Daniel S. Truesdell ◽  
Benton H. Calhoun ◽  
Siddharth Joshi ◽  
...  

Abstract Not all computing problems are created equal. The inherent complexity of processing certain classes of problems using digital computers has inspired the exploration of alternate computing paradigms. Coupled oscillators exhibiting rich spatio-temporal dynamics have been proposed for solving hard optimization problems. However, the physical implementation of such systems has been constrained to small prototypes. Consequently, the computational properties of this paradigm remain inadequately explored. Here, we demonstrate an integrated circuit of thirty oscillators with highly reconfigurable coupling to compute optimal/near-optimal solutions to the archetypally hard Maximum Independent Set problem with over 90% accuracy. This platform uniquely enables us to characterize the dynamical and computational properties of this hardware approach. We show that the Maximum Independent Set is more challenging to compute in sparser graphs than in denser ones. Finally, using simulations we evaluate the scalability of the proposed approach. Our work marks an important step towards enabling application-specific analog computing platforms to solve computationally hard problems.


2020 ◽  
Vol 34 (07) ◽  
pp. 13098-13105 ◽  
Author(s):  
Linchao Zhu ◽  
Du Tran ◽  
Laura Sevilla-Lara ◽  
Yi Yang ◽  
Matt Feiszli ◽  
...  

Typical video classification methods often divide a video into short clips, do inference on each clip independently, then aggregate the clip-level predictions to generate the video-level results. However, processing visually similar clips independently ignores the temporal structure of the video sequence, and increases the computational cost at inference time. In this paper, we propose a novel framework named FASTER, i.e., Feature Aggregation for Spatio-TEmporal Redundancy. FASTER aims to leverage the redundancy between neighboring clips and reduce the computational cost by learning to aggregate the predictions from models of different complexities. The FASTER framework can integrate high quality representations from expensive models to capture subtle motion information and lightweight representations from cheap models to cover scene changes in the video. A new recurrent network (i.e., FAST-GRU) is designed to aggregate the mixture of different representations. Compared with existing approaches, FASTER can reduce the FLOPs by over 10× while maintaining the state-of-the-art accuracy across popular datasets, such as Kinetics, UCF-101 and HMDB-51.


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
John F. Walker ◽  
J C Reiner ◽  
C Solenthaler

The high spatial resolution available from TEM can be used with great advantage in the field of microelectronics to identify problems associated with the continually shrinking geometries of integrated circuit technology. In many cases the location of the problem can be the most problematic element of sample preparation. Focused ion beams (FIB) have previously been used to prepare TEM specimens, but not including using the ion beam imaging capabilities to locate a buried feature of interest. Here we describe how a defect has been located using the ability of a FIB to both mill a section and to search for a defect whose precise location is unknown. The defect is known from electrical leakage measurements to be a break in the gate oxide of a field effect transistor. The gate is a square of polycrystalline silicon, approximately 1μm×1μm, on a silicon dioxide barrier which is about 17nm thick. The break in the oxide can occur anywhere within that square and is expected to be less than 100nm in diameter.


Sign in / Sign up

Export Citation Format

Share Document