Simulation of the inhibition mechanism of humidity ratio of air in gas explosion process

2013 ◽  
Vol 30 (1) ◽  
pp. 48-53
Author(s):  
Yuntao Liang ◽  
Wen Zeng
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Lei Pang ◽  
Mengjie Jin ◽  
Qianran Hu ◽  
Kai Yang

The influence of large-scale congestion on a confined natural gas explosion in a typical Chinese kitchen was studied using the computational fluid dynamics technology. It was found that opening the explosion venting surface promotes the development of turbulence, flame propagation velocity, and multipeak overpressure in the explosion flow field. Large-scale congestion can significantly strengthen the influence of the explosion venting surface on the flow field; the congestion and the explosion venting surface have a synergistic effect on the explosion flow field. At the moment of gas explosion, the flow fields in each area of the kitchen exhibit different distribution characteristics. A flow field near small-scale congestion is more likely to produce greater turbulence, combustion rate, and flame speed. The obstruction effect of large-scale congestion perpendicular to the flame propagation direction is dominant. The indoor flame propagation speed and overpressure development speed increase and the peak combustion rate and indoor peak overpressure decrease with an increase in obstacle blockage. Increases in the large-scale volume congestion rate and volume blockage in the kitchen induce changes in the indoor flame propagation mode and increase the external explosion overpressure. This paper investigated the correlation behavior between large-scale congestion and vent surface in a typical Chinese civil kitchen during natural gas explosion process and provided important support for understanding the mechanism of congestion on gas explosion process and the distribution of explosion hazards in a kitchen.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Kang Cen ◽  
Bin Song ◽  
Ruiqing Shen ◽  
Yidong Zhang ◽  
Wuge Yu ◽  
...  

Currently, there is very limited understanding of a gas explosion process inside residential buildings. In this study, a numerical model of gas explosion in a residential building was developed using Computational Fluid Dynamics (CFD). The numerical simulations were performed for different gas cloud filling regions and equivalence ratios to identify the initial scenario, and the simulation results were compared with the real consequences of gas explosion. Additionally, the temporal and spatial evolvement characteristics of explosion overpressure and indoor temperature were analyzed. Furthermore, the effects of vent area ratio and the activation pressure of vent panels in the kitchen were investigated to propose effective mitigation measures for the gas explosions inside residential buildings. The results show that the simulation results reproduced by the CFD model are in good agreement with the real accident consequences. During the explosion process, the overpressure distribution in a room is almost uniform at the same moment and there exists little spatial difference. The maximum temperature can reach up to 1953°C, which can cause secondary fire accidents easily. The maximum flame speed is in the range of 34.3 m/s and 230.9 m/s. It indicates that gas explosion inside residential buildings is a typical deflagration process. When the vent area ratio is less than 0.3, the overpressure peaks decrease rapidly with the increase of the vent area ratio. However, when the vent area ratio is larger than 0.3, the overpressure peaks are almost independent on the vent area ratio. There is a proportional relationship between the overpressure peaks and the activation pressure of vent panels. These achievements provide reliable reference data for the accident investigation of gas explosion and subsequent treatment.


2020 ◽  
Author(s):  
Robert Stepic ◽  
Lara Jurković ◽  
Ksenia Klementyeva ◽  
Marko Ukrainczyk ◽  
Matija Gredičak ◽  
...  

In many living organisms, biomolecules interact favorably with various surfaces of calcium carbonate. In this work, we have considered the interactions of aspartate (Asp) derivatives, as models of complex biomolecules, with calcite. Using kinetic growth experiments, we have investigated the inhibition of calcite growth by Asp, Asp2 and Asp3.This entailed the determination of a step-pinning growth regime as well as the evaluation of the adsorption constants and binding free energies for the three species to calcite crystals. These latter values are compared to free energy profiles obtained from fully atomistic molecular dynamics simulations. When using a flat (104) calcite surface in the models, the measured trend of binding energies is poorly reproduced. However, a more realistic model comprised of a surface with an island containing edges and corners, yields binding energies that compare very well with experiments. Surprisingly, we find that most binding modes involve the positively charged, ammonium group. Moreover, while attachment of the negatively charged carboxylate groups is also frequently observed, it is always balanced by the aqueous solvation of an equal or greater number of carboxylates. These effects are observed on all calcite features including edges and corners, the latter being associated with dominant affinities to Asp derivatives. As these features are also precisely the active sites for crystal growth, the experimental and theoretical results point strongly to a growth inhibition mechanism whereby these sites become blocked, preventing further attachment of dissolved ions and halting further growth.


2020 ◽  
Author(s):  
Jon Uranga ◽  
Lukas Hasecke ◽  
Jonny Proppe ◽  
Jan Fingerhut ◽  
Ricardo A. Mata

The 20S Proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells as well as in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome, an aspect which is often neglected despite the crucial role protons play in the catalysis. As example substrates, we take the inhibition by epoxy and boronic acid containing warheads. We have combined cluster quantum mechanical calculations, replica exchange molecular dynamics and Bayesian optimization of non-bonded potential terms in the inhibitors. In relation to the latter, we propose an easily scalable approach to the reevaluation of non-bonded potentials making use of QM/MM dynamics information. Our results show that coupled acid-base equilibria need to be considered when modeling the inhibition mechanism. The coupling between a neighboring lysine and the reacting threonine is not affected by the presence of the inhibitor.


Sign in / Sign up

Export Citation Format

Share Document