Effect of high temperature on leaf senescence and related enzymes of grain starch synthesis in stay-green wheat after anthesis

2011 ◽  
Vol 35 (7) ◽  
pp. 769-778 ◽  
Author(s):  
Hui-Qing SHI ◽  
Yue-Hua GONG ◽  
Dong-Wu ZHANG
2013 ◽  
Vol 39 (6) ◽  
pp. 1096 ◽  
Author(s):  
Dong-Qing YANG ◽  
Zhen-Lin WANG ◽  
Yan-Ping YIN ◽  
Ying-Li NI ◽  
Wei-Bing YANG ◽  
...  

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Adeel Khan ◽  
Munir Ahmad ◽  
Mukhtar Ahmed ◽  
M. Iftikhar Hussain

Temperature across the globe is increasing continuously at the rate of 0.15–0.17 °C per decade since the industrial revolution. It is influencing agricultural crop productivity. Therefore, thermotolerance strategies are needed to have sustainability in crop yield under higher temperature. However, improving thermotolerance in the crop is a challenging task for crop scientists. Therefore, this review work was conducted with the aim of providing information on the wheat response in three research areas, i.e., physiology, breeding, and advances in genetics, which could assist the researchers in improving thermotolerance. The optimum temperature for wheat growth at the heading, anthesis, and grain filling duration is 16 ± 2.3 °C, 23 ± 1.75 °C, and 26 ± 1.53 °C, respectively. The high temperature adversely influences the crop phenology, growth, and development. The pre-anthesis high temperature retards the pollen viability, seed formation, and embryo development. The post-anthesis high temperature declines the starch granules accumulation, stem reserve carbohydrates, and translocation of photosynthates into grains. A high temperature above 40 °C inhibits the photosynthesis by damaging the photosystem-II, electron transport chain, and photosystem-I. Our review work highlighted that genotypes which can maintain a higher accumulation of proline, glycine betaine, expression of heat shock proteins, stay green and antioxidant enzymes activity viz., catalase, peroxidase, super oxide dismutase, and glutathione reductase can tolerate high temperature efficiently through sustaining cellular physiology. Similarly, the pre-anthesis acclimation with heat treatment, inorganic fertilizer such as nitrogen, potassium nitrate and potassium chloride, mulches with rice husk, early sowing, presoaking of a 6.6 mM solution of thiourea, foliar application of 50 ppm dithiothreitol, 10 mg per kg of silicon at heading and zinc ameliorate the crop against the high temperature. Finally, it has been suggested that modern genomics and omics techniques should be used to develop thermotolerance in wheat.


Author(s):  
George Bawa ◽  
Guopeng Chen ◽  
Jianyi Shi ◽  
Chen Ping ◽  
Lingyang Feng ◽  
...  

2010 ◽  
Vol 14 ◽  
pp. 119-129
Author(s):  
R. Shirzadian-Khorramabad ◽  
H.C. Jing ◽  
J. Hille ◽  
P.P. Dijkwel

Natural or harvest-induced senescence is a major determinant factor causing crop losses. The plant hormone ethylene is a strong inducer of senescence and decreasing the ethylene response can reduce senescence, albeit often with undesirable pleiotropic effects. We took advantage of ethylene-induced leaf senescence as a tool to screen for late senescence Arabidopsis mutants that still have a functional ethylenesignalling pathway. Sixteen Arabidopsis onset of leaf death (old) mutants were selected that stayed green after treatment with ethylene. While all the mutants responded to ethylene in a triple response assay, ten mutants responded to the treatment in the same way as the wild type. These ten mutants showed limited pleiotropic effects when grown under standard growth conditions but nine mutants flowered slightly later than the wild type. Genetic characterisation of a subset of the mutants identified several independent loci controlling the leaf senescence process. The approach resulted in the isolation of several stay-green mutants with a functional ethylene response pathway. The late senescence mutants show extended leaf longevity and further research may advance the field of pre- or post-harvest senescence technology. The results, moreover, suggest that there is a correlation between senescence and floral induction. Keywords: Senescence, Arabidopsis, ethylene, mutant, shelf life


2008 ◽  
pp. 1515-1518
Author(s):  
Min-Hyuk Oh ◽  
Tae-Shik Park ◽  
Woon-Ho Yang ◽  
Kang-Su Kwak ◽  
Jin-Chul Shin ◽  
...  

Author(s):  
Harshavardan J Hilli

Staygreen is one such trait in which genotypes possessing this trait maintain more photo synthetically active leaves (& less senescent) than genotypes not possessing this trait. Delay of leaf senescence also known as stay-green character, has been identified as an important component in the genetic improvement of several crops to promote stress tolerance and yield gain. Although the stay-green phenotype is superficially similar in all species and genotypes, the genetic and physiological routes the traits are diverse. Photosynthetically active leaves for longer period depends on the concentration of chlorophyll pigment absorbing sunlight for photosynthesis. An multi dimensional approach for studying the senescence pathway rather than studying only the physiological role made a significant role in improvement. Hence new approaches like genomics, proteomics and metabolomics studies are necessary to understand the various transcription factors involved in regulating the leaf senescence process. Therefore, this review has aimed to bring light to major aspects of the stay-green character, showing its potential use in plant breeding.


2002 ◽  
Vol 53 (370) ◽  
pp. 801-808 ◽  
Author(s):  
Howard Thomas ◽  
Helen Ougham ◽  
Peter Canter ◽  
Iain Donnison

1994 ◽  
Vol 21 (6) ◽  
pp. 791 ◽  
Author(s):  
CF Jenner

As temperature rises above 18-22�C, the observed decrease in the duration of deposition of dry matter in the kernel is not accompanied by a compensating increase in the rate of grain filling with the result that grain weight (and yield) is diminished at high temperature. Reduced starch content accounts for most of the reduction in grain dry matter at high temperature. Responses to temperature in the low temperature range, 20-30�C (the LTR), could possibly be ascribed to the temperature response characteristics of the reaction catalysed by soluble starch synthase (SSS), the enzyme synthesising starch. However, the rate of cell enlargement and the rate of accumulation of nitrogen in the grain also do not increase much as temperature rises, so other explanations are conceivable for the temperature responses in the LTR. Variation amongst cultivars of wheat in tolerance of high temperature is evident in the LTR. At temperatures above 30�C (in the high temperature range (HTR) between 30 and 40�C), even for short periods, the rate of starch deposition is slower than that observed at lower temperatures, an effect which is carried over after transfer from high to lower temperatures. This response is attributable to a reduction in the activity, possibly due to thermal denaturation, of SSS. Several forms of SSS are found in cereal endosperm, and some forms may be more tolerant of high temperature than others. Loss of enzyme activity at high temperature is swift, but is partly restored some time after transfer from hot to cool conditions. There appear to be two distinct mechanisms of response to elevated temperature, both resulting in a reduced grain weight through reduced starch deposition, but one of them is important only in the range of temperature above 30�C.


Sign in / Sign up

Export Citation Format

Share Document