Starch Synthesis in the Kernel of Wheat Under High Temperature Conditions

1994 ◽  
Vol 21 (6) ◽  
pp. 791 ◽  
Author(s):  
CF Jenner

As temperature rises above 18-22�C, the observed decrease in the duration of deposition of dry matter in the kernel is not accompanied by a compensating increase in the rate of grain filling with the result that grain weight (and yield) is diminished at high temperature. Reduced starch content accounts for most of the reduction in grain dry matter at high temperature. Responses to temperature in the low temperature range, 20-30�C (the LTR), could possibly be ascribed to the temperature response characteristics of the reaction catalysed by soluble starch synthase (SSS), the enzyme synthesising starch. However, the rate of cell enlargement and the rate of accumulation of nitrogen in the grain also do not increase much as temperature rises, so other explanations are conceivable for the temperature responses in the LTR. Variation amongst cultivars of wheat in tolerance of high temperature is evident in the LTR. At temperatures above 30�C (in the high temperature range (HTR) between 30 and 40�C), even for short periods, the rate of starch deposition is slower than that observed at lower temperatures, an effect which is carried over after transfer from high to lower temperatures. This response is attributable to a reduction in the activity, possibly due to thermal denaturation, of SSS. Several forms of SSS are found in cereal endosperm, and some forms may be more tolerant of high temperature than others. Loss of enzyme activity at high temperature is swift, but is partly restored some time after transfer from hot to cool conditions. There appear to be two distinct mechanisms of response to elevated temperature, both resulting in a reduced grain weight through reduced starch deposition, but one of them is important only in the range of temperature above 30�C.

1991 ◽  
Vol 18 (2) ◽  
pp. 165 ◽  
Author(s):  
CF Jenner

Ears of wheat were exposed for up to 7 days during the grain-filling stage to high temperature (35�C day/25�C night) and metabolic responses in the grain were compared to those in ears maintained at lower temperatures (21�C day/16�C night). Two cultivars of wheat known to differ in their post-anthesis tolerance of high temperature were compared. Raising the temperature resulted in a small increase in the rate of dry matter accumulation: both cultivars responded similarly. Sucrose content of the endosperm was either not affected or increased by raising the temperature. Raising the temperature had differential effects on glucose and fructose content: fructose was substantially reduced while glucose was either unaffected or slightly increased. After raising the temperature the concentrations of all three hexose phosphates measured, glucose-6-phosphate (G-6-P), glucose-1-phosphate (G-1-P) and fructose-6-phosphate (F-6-P), were reduced similarly on a percentage basis and to about the same extent as fructose. The concentration of the sugar nucleotide (UDP-glucose) resulting from the breakdown of sucrose by sucrose synthase was also reduced at high temperature. Judging from calculated mass-action ratios, all three catalytic steps involved in the interconversion of the metabolites mentioned above were close to equilibrium, and only one mass action ratio (for sucrose synthase) was affected by heating: it was doubled. Although temperature clearly resulted in changes in the reaction catalysed by sucrose synthase, it was not clear how temperature had acted. Concentration of the precursor for starch synthesis (ADP-glucose) was slightly lower in both cultivars at the higher temperature. Taken together the responses could provide at least a partial explanation for the smallness of the increase in starch deposition with increase in temperature, but do not explain the different responses of these two cultivars to high temperature.


1998 ◽  
Vol 49 (8) ◽  
pp. 1287 ◽  
Author(s):  
M. A. B. Wallwork ◽  
S. J. Logue ◽  
L. C. MacLeod ◽  
C. F. Jenner

Short periods of high temperatures (up to 35°C) during mid grain filling appear to reduce yield and quality in barley. Plants of 3 malting barley varieties, Schooner, Arapiles, and Sloop (a new South Australian malting variety), were grown under constant environment conditions from germination to maturity and exposed to 5 days of high temperatures (up to 35°C) during mid grain filling. Schooner and Sloop showed similar patterns of accumulation of dry matter under control conditions (21°C/16°C, day/night temperature) and in response to high temperatures. In all varieties, the reduction in starch accumulation represented the most significant detrimental effect of high temperature and made the greatest contribution to the reduction in final grain weight. The reduction in absolute grain nitrogen (N) in heat-treated Arapiles grains represents a potentially important response under high temperature conditions. In this study, water loss did not have a decisive role in the termination of grain filling. Continued accumulation of endosperm dry matter at low moisture levels suggested that water distribution and/or components of water potential may be more important than overall water content in the cessation of grain filling. Final grain composition depended not only on the amount of endosperm storage component present in the grain but also on the contribution of the non-endosperm components (including the embryo and husk) to final grain dry weight. In some cases, changes in the contribution made by the non-endosperm components of the grain to final grain weight masked important high temperature effects on key endosperm storage components. Hot water extract (HWE) values were similar within treatments and ranged from 73% to 78%. High temperature exposure reduced HWE for all varieties. Malt b-glucan was lower in heat-treated grains than in control grains. Despite relatively high malt protein levels in all varieties, higher free amino N levels in heat-treated grains indicated a higher protein modification than in control grains.


2003 ◽  
Vol 141 (2) ◽  
pp. 203-212 ◽  
Author(s):  
M. ZAHEDI ◽  
C. F. JENNER

Compared with growth at 20/15°C (day/night), exposure of wheat (Triticum aestivum L.) plants to moderately high temperature (30/25°C) significantly decreased grain weight through shortening the duration of grain filling, combined with small (or no) positive increases in the rate of grain filling. Several mathematical models of grain filling were assessed for their suitability as means of analysing these effects of temperature. The ordinary logistic model was found to be the most appropriate model and was used for the analysis of grain filling responses in four cultivars differing in their responses. Genotypic variation in response to temperature was observed for both rate and duration of grain filling, but the variation for the duration of grain filling among cultivars was small at the higher temperature. Significant correlation was found between single grain weight with the rate, but not with the duration, of grain filling at high temperature, which indicated an important role for synthetic processes involved in grain filling in the temperature sensitivity of wheat cultivars. As they are independent traits, both rate and duration are required selection criteria for the improvement of heat tolerance. Responses of one attribute estimated from the logistic model, the inflection point of the course of grain filling, may give insight into a temperature response that is distinguishable from that associated with the duration of grain filling. The inflection point appears to be worth including as a criterion in selecting for high temperature tolerance in wheat.


1994 ◽  
Vol 21 (6) ◽  
pp. 783 ◽  
Author(s):  
K Denyer ◽  
CM Hylton ◽  
AM Smith

The decrease in yield which is observed when developing storage organs such as cereal grains or potato tubers are exposed to high temperatures is due to a lower final starch content. The rate of starch synthesis during the development of these storage organs at high temperature, is either reduced or fails to increase sufficiently to compensate for the shorter developmental period. This effect on the rate of starch synthesis does not seem to be due to a reduction in the supply of photosynthate. One of the enzymes in the pathway of starch synthesis, soluble starch synthase, is susceptible to heat inactivation at unusually low temperatures and may also have a low optimum temperature for maximum activity. In some storage organs, the maximum catalytic activity of soluble starch synthase is not very much greater than the rate of starch synthesis. A decrease in the activity of this enzyme is therefore, likely to affect the rate of starch synthesis. Thus, the effect of high temperature on the rate of starch synthesis may be due, at least in part, to the properties of this enzyme. This review discusses the unusual heat-sensitivity of starch synthase in the context ofthe effects of high temperature on starch synthesis in storage organs.


2003 ◽  
Vol 30 (3) ◽  
pp. 291 ◽  
Author(s):  
Morteza Zahedi ◽  
Rajinder Sharma ◽  
Colin F. Jenner

The effects of a sustained period of moderately high temperature were evaluated on the availability of substrate and the activity of starch synthase (ADP-glucose: 1,4-α-D-glucan 4-α-D-glucosyltransferase, EC 2.4.1.21) in the developing grains of two wheat Triticum aestivum L. cultivars differing in their tolerance to high temperature. Final grain weight was reduced by 33% in the least sensitive (cv. Kavko) and by 40% in the most sensitive (cv. Lyallpur) cultivar as post-anthesis temperature was raised from 20/15°C (day/night) to 30/25°C. The difference in the response of the two cultivars was mainly due to changes in the rate of grain filling at high temperature. The response of the rate of grain filling at high temperature, and the differential effects on the two cultivars, did not seem to be explained by an effect of temperature on the supply of assimilate (sucrose) or on the availability of the substrate for starch synthesis (ADP-glucose) in the grains. In vitro, but not in vivo, the differential responses of the efficiency (Vmax/Km) of soluble starch synthase in the two cultivars to an increase in temperature were associated with differences in the temperature sensitivity of grain filling. In vivo, the most remarkable difference between the two varieties was in the absolute values of the efficiency of soluble starch synthase, with the most tolerant cultivar having the highest efficiency.


1993 ◽  
Vol 20 (2) ◽  
pp. 197 ◽  
Author(s):  
JS Hawker ◽  
CF Jenner

Ears of wheat were exposed for up to 10 days during the grain-filling stage to high temperature (35�C) and activities of five enzymes in the sucrose to starch pathway were compared to those in ears maintained at lower temperature (21�C day/16�C night). Two cultivars of wheat known to differ in their post-anthesis tolerance of high temperature were compared. On a per grain basis, the activity of sucrose synthase and of ADPglucose pyrophosphorylase in ears maintained at 21/16�C throughout did not change greatly between days 16 and 32 after anthesis, whereas UDPglucose pyrophosphorylase and soluble starch synthase activities declined with advancing development. Soluble starch synthase activity in grains of heated ears was decreased within 1 day to about one- half of the value in unheated grains, and 3 days' additional heating did not reduce the activity much further. Insoluble starch synthase activity was not significantly reduced by heating. Compared to soluble starch synthase, ADPglucose pyrophosphorylase activity was more slowly affected and decreased to a lesser extent by heat. Sucrose synthase and UDPglucose pyrophosphorylase activities were either not affected or only slightly reduced; part of this reduction could be due to advanced development at the higher temperature. In recovery experiments ears were heated for brief periods and then returned to 21/16�C for a few days. ADPglucose pyrophosphorylase and soluble starch synthase activities recovered in the cooler conditions but the other two enzymes generally only maintained or lost further activity. From a comparison of the activities of these enzymes with the rate of starch deposition, and by taking into account the effects of heating, it is proposed that the influence of heating on final grain dry weight is attributable to the observed reductions of soluble starch synthase activity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenjing Zhang ◽  
Yan Zhao ◽  
Lingyu Li ◽  
Xu Xu ◽  
Li Yang ◽  
...  

Low temperatures (LT) in spring can have a major impact on the yields of wheat in winter. Wheat varieties with different cold sensitivities (the cold-tolerant Yannong 19 variety and the cold-sensitive Yangmai 18 variety) were used to study the responses of the wheat grain starch synthesis and dry material accumulation to short-term LT during the booting stage. The effects of short-term LT on the activities of key wheat grain starch synthesis enzymes, starch content and grain dry-matter accumulation were determined by exposing the wheat to simulated LT of from −2 to 2°C. Short-term LT stress caused a decrease in the fullness of the wheat grains along with decreased activities of adenosine diphosphate glucose pyrophosphorylase (AGPase, EC2.7.7.27), soluble starch synthase (SSS, EC2.4.1.21), granule-bound starch synthase (GBSS, EC2.4.1.21), and starch branching enzyme (SBE, EC2.4.1.18) at different spike positions during the filling stage. The rate of grain starch accumulation and starch content decreased with decreasing temperatures. Also, the duration of grain filling increased, the mean and the maximum filling rates were reduced and the quality of the grain dry-matter decreased. The number of grains per spike and the thousand-grain weight of the mature grains also decreased. Our data showed that short-term LT stress at the booting stage caused a decrease in the activities of key starch synthesis enzymes at the grain-filling stage. These changes reduced the accumulation of starch, decreased the filling rate, and lowered the accumulation of grain dry matter to ultimately decrease grain yields.


1998 ◽  
Vol 25 (2) ◽  
pp. 173 ◽  
Author(s):  
M. A. B. Wallwork ◽  
S. J. Logue ◽  
L. C. MacLeod ◽  
C. F. Jenner

Plants of malting barley variety Schooner were exposed to 5 days of high temperatures (up to 35°C) during mid grain filling under controlled environment conditions. Grains from heat treated plants accumulated c. 30% less starch than grains from control plants (21/16°C; 14 h day). Reduced starch deposition was not limited by assimilate levels in heat treated grains, but high temperature reduced the conversion of sucrose to starch. The reduction in starch synthesis appeared to result from the effects of diminished catalytic activity of a number of enzymes in the committed pathway of starch synthesis, and/or delayed recovery of enzyme activity in the cooler recovery conditions. Reductions of 11–75% in the activity of the enzymes under investigation followed high temperature exposure. In addition, ADPglucose pyrophosphorylase, branching enzyme and granule bound starch synthase showed increased activity during exposure to moderate temperatures (28–32°C), but reduced activity at high temperatures, while soluble starch synthase showed an immediate loss of activity, even at moderate temperatures. Sucrose synthase and UDPglucose pyrophosphorylase showed the greatest reduction in catalytic activity after plants were returned to cooler conditions. Individual enzymes showed variation in the level of recovery under the cooler temperature conditions which followed the heating period.


2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.


1994 ◽  
Vol 21 (6) ◽  
pp. 829 ◽  
Author(s):  
GW Singletary ◽  
R Banisadr ◽  
PL Keeling

Heat stress during maize seed development can interfere with endosperm starch biosynthesis and reduce seed size, an important component of yield. Our objectives were to evaluate the direct influence of temperature during grain filling on kernel growth, carbohydrate accumulation, and corresponding endosperm metabolism. Kernels of maize were grown in vitro at 25�C until 15 or 16 days after pollination and then subjected to various temperatures for the remainder of their development. Mature kernel dry weight declined 45% in a linear fashion between 22 and 36�C. The rate of starch accumulation reached a maximum at approximately 32�C, and when measured at frequent intervals, declined only slightly with further temperature increase to 35�C. Reduced seed size resulted from an abbreviated duration of starch-related metabolism, which did not appear to be limited by endogenous sugars. Instead, a survey of 12 enzymes of sugar and starch metabolism indicated that ADP glucose pyrophosphorylase and soluble starch synthase were unique in displaying developmental peaks of activity which were compressed both in amount and time, similar to the effect of temperature on starch accumulation. We conclude that decreased starch synthesis in heat-stressed maize kernels results from a premature decline in the activity of these enzymes.


Sign in / Sign up

Export Citation Format

Share Document