scholarly journals Peanut Based Biodiesel Production in Georgia: An Economic Feasibility Study

2017 ◽  
Vol 5 (1) ◽  
pp. 12-22
Author(s):  
Dustin Hogan ◽  
Anoop Desai ◽  
Valentin Soloiu

An increased emphasis on renewable energy in recent years stems from diminishing supplies of fossil fuels. Add to that an ever-increasing global demand for energy and the conditions for a sustained push towards alternative, renewable forms of energy are clearly present. Biodiesel can be regarded as one such source of alternate energy. It is a renewable diesel fuel substitute that can be manufactured from a variety of naturally occurring oils and fats, primarily through the process of trans-esterification. Peanuts constitute one of the main sources of biodiesel. From the national perspective, Georgia is leading state in the country for producing peanuts.  It accounts for approximately 45 percent of the crop's national acreage and production. Last year Georgia farmers harvested 755,000 acres of peanuts, for a yield of 2.2 billion pounds (EPA, 2010). Southern Georgia is the most productive region due to its coastal plain region, which runs from Columbus through Macon to Augusta. However, for mainstream adoption of biodiesel to be successful, the economic case for production needs to be examined carefully. This paper analyzes and presents the economic feasibility of biodiesel production, with a focus on southeast Georgia.

2020 ◽  
Vol 4 (3) ◽  
pp. 1199-1207
Author(s):  
Amruta P. Kanakdande ◽  
Chandrahasya N. Khobragade ◽  
Rajaram S. Mane

The continuous rising demands and fluctuations in the prices of fossil fuels warrant searching for an alternative renewable energy source to manage the energy needs.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4447
Author(s):  
Hokey Min ◽  
Yohannes Haile

With a growing demand for safe, clean, and affordable energy, countries across the world are now seeking to create and rapidly develop renewable energy (RE) businesses. The success of these businesses often hinges on their ability to translate RE into sustainable value for energy consumers and the multiple stakeholders in the energy industry. Such value includes low production costs due to an abundance of natural resources (e.g., wind, water, sunlight), and public health benefits from reduced environmental pollution. Despite the potential for value creation, many RE businesses have struggled to create affordable energy as abundant as that which is produced by traditional fossil fuels. The rationale being that traditional RE sources emanating from natural resources tend to rely on unpredictable weather conditions. Therefore, to help RE businesses deliver sustainable value, we should leverage disruptive innovation that is less dependent on natural resources. This paper is one of the first attempts to assess the impact of disruptive innovation on RE business performances based on the survey data obtained from multiple countries representing both emerging and developed economies.


Catalysts ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 15 ◽  
Author(s):  
Usman Nda-Umar ◽  
Irmawati Ramli ◽  
Yun Taufiq-Yap ◽  
Ernee Muhamad

The depletion of fossil fuels has heightened research and utilization of renewable energy such as biodiesel. However, this has thrown up another challenge of significant increase in its byproduct, glycerol. In view of the characteristics and potentials of glycerol, efforts are on the increase to convert it to higher-value products, which will in turn improve the overall economics of biodiesel production. These high-value products include biofuels, oxygenated fuel additives, polymer precursors and other industrial bio-based chemicals. This review gives up-to-date research findings in the conversion of glycerol to the above high-value products, with a special focus on the performance of the catalysts used and their challenges. The specific products reviewed in this paper include hydrogen, ethanol, methanol, acetin, glycerol ethers, solketal, acetal, acrolein, glycerol carbonate, 1,3-propanediol, polyglycerol and olefins.


2014 ◽  
Vol 53 (4II) ◽  
pp. 309-325
Author(s):  
Rafi Amir-Ud-Din

Energy crisis in Pakistan had been brewing long before it became an important national issue with the potential to significantly affect the outcome of general elections of 2013. The looming crisis of depleting non-renewable energy sources combined with a feeble economy has lent a new urgency to the search for an energy mix which is sustainable, economically viable and environmentally least hazardous. Fossil fuels with their known adverse environmental impacts dominate the current energy mix of Pakistan. The renewable energy sources remain underutilised despite being cost effective and less hazardous for the environment. A substantial amount of literature has highlighted various dimensions of existing energy sources in Pakistan with a particular emphasis on the environmental impact, the sustainability and the efficiency of various energy sources [see Asif (2009); Basir, et al. (2013); Bhutto, et al. (2012); Mirza, et al. (2009, 2008, 2003); Muneer and Asif (2007); Sheikh (2010) for example]. This study analyses the environmental impact, economic feasibility and efficiency of various energy sources subject to various economic and noneconomic constraints. Section 2 discusses energy security by reviewing various tapped and untapped energy sources besides analysing current energy mix and its future prospects. Section 3 highlights the interaction of energy use and environment. Section 4 discusses two approaches to assess the feasibility of an energy mix: disaggregated and aggregated. The latter approach makes a multidimensional comparison of all the energy sources discussed in this study. Section 5 consists of discussion and concluding remarks.


2000 ◽  
Vol 10 (3) ◽  
pp. 621-625
Author(s):  
John M. Ruter ◽  
Jeff L. Sibley

In 1991, a cooperative project with the U.S. National Arboretum in Washington, D.C., was initiated in Tifton, Ga. (USDA hardiness zone 8a) to evaluate red maples (Acer rubrum L.) potentially suitable for the coastal plain region of the southeastern U.S. Greatest annual height growth across all cultivars over 6 years was for `Alapaha', a seedling selection from southern Georgia with annual height growth of 35 inches (88.0 cm), and several seedling selections from northern Florida with annual height increases in excess of 33 inches (86.0 cm). Selections showing the least average annual height growth were NA-56024 and NA-57772 (`Red Rocket'). For commercially available cultivars, the most dependable for fall color in Tifton was `October Glory'®. In addition, two new selections from the National Arboretum have also shown excellent fall color—`Somerset' and `Brandywine'.


2007 ◽  
Vol 6 (1) ◽  
pp. 02
Author(s):  
J. V. C. Vargas

Fossil fuels are currently recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Therefore, renewable, carbon neutral, alternative fuels are necessary for environmental and economic sustainability. Several countries have been considering the use of alternative fuels derived from agriculture. In that context, ethanol derived from sugar-cane and/or corn crops, and biodiesel derived from oil crops are potential renewable and carbon neutral alternatives to fossil fuels. Unfortunately, fuel from crops, waste and animal fat cannot realistically satisfy even a small fraction of the existing global demand for fuels. In Brazil, the government has been subsiding ethanol from sugar-cane crops for more than 30 years, and together with research investment on oil off-shore exploration, the initiative made possible for the country, at least for the moment, to become energy self sufficient, but due to oil supplies depletion, that scenery will change in the near future. Another limiting factor is cost. For example, the economic aspect of biodiesel production limits its development and large-scale use. Biodiesel usually costs almost twice the price per liter of conventional diesel fuel, currently in the US.Apart from economic aspects, it is clear that biofuel production technology needs to be improved to meet global fuel demand rate. One possible direction is the use of microalgae, that appear to be the only source of renewable biodiesel that is capable of meeting the diesel fuel global demand. Like plants, microalgae use sunlight to produce oils but they do so more efficiently than crop plants. Oil productivity of many microalgae greatly exceeds the oil productivity of the best producing oil crops.Approaches for making microalgal biodiesel economically competitive therefore need to be developed.The mission of Engenharia Térmica is to document the scientific progress in areas related to energy, particularly oil and renewables. We are confident we will continue to receive articles’ submissions that help enable sustainable energy solutions in the near future.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
José A. León ◽  
Gisela Montero ◽  
Marcos A. Coronado ◽  
Conrado García ◽  
Héctor E. Campbell ◽  
...  

In recent years, research on noncatalytic methods for biodiesel production has increased, mainly processes under supercritical conditions that allow the processing of waste vegetable oils (WVO) without the need to use catalysts, where the absence of catalyst simplifies the processes of purification of biodiesel. The high consumption of alcohol and energy to maintain the appropriate conditions of pressure and temperature of the reaction has turned the processes of supercritical conditions into an unfeasible method. However, the stages of biodiesel purification and methanol recovery are more straightforward, allowing the reduction of the total energy consumption by 25% compared to alkaline methods. Therefore, the present work describes a study through Aspen Plus® of the production of biodiesel by a process in supercritical conditions with WVO as raw material. Also, a solar collector arrangement was structured using the TRNSYS® simulator to supply energy to the process. To evaluate the economic feasibility of the proposed process, the installation of a pilot plant in Mexicali, Baja California, was considered. The internal rate of return (IRR) and the net present value (NPV) were determined for ten-year period. The planned system allows supplying solar energy, 69.5% of the energy required by the process, thus reducing the burning of fossil fuels and the operation cost. Despite the additional investment cost, for the solar collectors, the process manages to maintain a competitive production cost of USD 0.778/l of biodiesel. With an IRR of 31.7%, the investment is recovered before the fifth year of operation. The integration and implementation of clean technologies are vital in the development of the biofuels.


Author(s):  
Hossein Shahinzadeh ◽  
Gevork B. Gharehpetian ◽  
S. Hamid Fathi ◽  
Sayed Mohsen Nasr-Azadani

In recent years, several factors such as environmental pollution which is caused by fossil fuels and various diseases caused by them from one hand and concerns about the dwindling fossil fuels and price fluctuation of the products and resulting effects of these fluctuations in the economy from other hand has led most countries to seek alternative energy sources for fossil fuel supplies. Such a way that in 2006, about 18% of the consumed energy of the world is obtained through renewable energies. Iran is among the countries that are geographically located in hot and dry areas and has the most sun exposure in different months of the year. Except in the coasts of Caspian Sea, the percentage of sunny days throughout the year is between 63 to 98 percent in Iran. On the other hand, there are dispersed and remote areas and loads far from national grid which is impossible to provide electrical energy for them through transmission from national grid, therefore, for such cases the renewable energy technologies could be used to solve the problem and provide the energy. In this paper, technical and economic feasibility for the use of renewable energies for independent systems of the grid for a dispersed load in the area on the outskirts of Isfahan (Sepahan) with the maximum energy consumption of 3Kwh in a day is studied and presented. In addition, the HOMER simulation software is used as the optimization tool.


2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


Sign in / Sign up

Export Citation Format

Share Document