scholarly journals Long Noncoding RNA CAT104 Promotes Cell Viability, Migration, and Invasion in Gastric Carcinoma Cells Through Activation of MicroRNA-381-Inhibiting Zinc Finger E-box-Binding Homeobox 1 (ZEB1) Expression

Author(s):  
Gang Yuan ◽  
Jingzi Quan ◽  
Dongfang Dong ◽  
Qunying Wang
Author(s):  
Shujun Liu ◽  
Guigang Yan ◽  
Junfu Zhang ◽  
Lianzhi Yu

Evidence suggests that the long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is upregulated in cancer tissues, and its elevated expression is associated with hyperproliferation. However, the underlying mechanisms regarding the role of MALAT1 in retinoblastoma (RB) remain unclear. This study aimed to explore the functional role of MALAT1 in RB by targeting miR-124. The results showed that the expression of MALAT1 was significantly higher in the Y79 cell line than in the ARPE-19 cell line (p < 0.01). Moreover, MALAT1 silence inhibited cell viability, migration, and invasion and promoted apoptosis in Y79 cells (p < 0.05, p < 0.01, or p < 0.001). miR-124 was upregulated by MALAT1 silence and hence was identified as a target of MALAT1 (p < 0.05 or p < 0.001). In addition, miR-124 suppression inhibited cell apoptosis and remarkably abolished the inhibitory effects of MALAT1 silence on cell viability, migration, and invasion (p < 0.05, p < 0.01, or p < 0.001). In addition, Slug was a target of miR-124 and regulated cell viability, migration, invasion, and apoptosis in Y79 cells (p < 0.05, p < 0.01, or p < 0.001). Further, Slug silence abolished miR-124 suppression-induced inactivation of the ERK/MAPK and Wnt/β-catenin pathways. Taken together, our data highlight the pivotal role of MALAT1 in RB. Moreover, the present study elucidated the MALAT1‐miR-124‐ERK/MAPK and Wnt/β-catenin signaling pathways in RB, which might provide a new approach for the treatment of RB.


Tumor Biology ◽  
2015 ◽  
Vol 37 (2) ◽  
pp. 2691-2702 ◽  
Author(s):  
Litian Hu ◽  
Hua Ye ◽  
Guangming Huang ◽  
Fei Luo ◽  
Yawei Liu ◽  
...  

Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769502 ◽  
Author(s):  
Qiao-Li Lv ◽  
Shu-Hui Chen ◽  
Xue Zhang ◽  
Bao Sun ◽  
Lei Hu ◽  
...  

Increasing evidence indicates that long noncoding RNAs play important roles in development and progression of various cancers. Zinc finger antisense 1 is a novel long noncoding RNA whose clinical significance, biological function, and underlying mechanism are still undetermined in glioma. In this study, we reported that zinc finger antisense 1 expression was markedly upregulated in glioma and tightly correlated with clinical stage. Moreover, patients with high zinc finger antisense 1 expression had shorter survival. Multivariate Cox regression analysis provided a clue that, probably, zinc finger antisense 1 level could serve as an independent prognostic factor for glioma. Functionally, zinc finger antisense 1 acted as an oncogene in glioma because its knockdown could promote apoptosis and significantly inhibit cell proliferation, migration, and invasion. Furthermore, zinc finger antisense 1 silencing could result in cell cycle arrest at the G0/G1 phase and correspondingly decrease the percentage of S phase cells in both U87 and U251 cell lines. Moreover, it was found that silenced zinc finger antisense 1 could impair migration and invasion by inhibiting the epithelial–mesenchymal transition through reducing the expression of MMP2, MMP9, N-cadherin, Integrin β1, ZEB1, Twist, and Snail as well as increasing E-cadherin level in glioma. Taken together, our data identified that zinc finger antisense 1 might act as a valuable prognostic biomarker and potential therapeutic target for glioma.


Sign in / Sign up

Export Citation Format

Share Document