Drug Excipient Compatibility, Development and Preliminary Clinical Studies of Tizanidine Hydrochloride Floating Drug Delivery System

Author(s):  
Kishan V ◽  
Swathi Yambadi ◽  
Ramesh Bomma

The objective of this investigation was to develop formulation of floating matrix tablets of tizanidine HCl to prolong the gastric residence time by using hydroxy propyl methyl cellulose (HPMC K15M) or xanthan gum as sole release retardant and to check the clinical response. The drug-excipients compatibility studies were conducted using DSC and also by visual observation. Incorporation of NaHCO3 in the formulation resulted incompatibility with drug and therefore, the composition was modified by replacing NaHCO3 with CaCO3 in remaining formulations. Floating matrix tablets of tizanidine were developed by direct compression method and the developed ten formulations exhibited satisfactory physicochemical characteristics and in-vitro buoyancy. Formulation (F9) was selected as optimized formulation based on physicochemical characters, in-vitro buoyancy and drug release, and was used in in-vivo radiographic studies in human volunteers by incorporating BaSO4. In radiographic studies, the gastric retention time of floating tablets was found to be 4 ± 0.86 h (n=3). Optimized floating tablets (F9) were used to know the clinical effects in patients suffering from spasticity under the observation of clinician. The optimized tizanidine HCl floating matrix tablets were developed and found to have gastric retention behaviour in stomach and further were found to have good clinical effects in patients suffering from spasticity during preliminary clinical studies.

Author(s):  
Bhikshapathi D. V. R. N. ◽  
Haarika B ◽  
Jyothi Sri S ◽  
K Abbulu

The purpose of present investigation was to develop floating matrix tablets of gemifloxacin mesylate, which after oral administration could prolong the gastric residence time, increase the drug bioavailability and diminish the side effects of irritating drugs. Tablets containing drug, various viscosity grades of hydroxypropyl methylcellulose such as HPMC K4M and HPMC K15M as matrix forming agent, Sodium bicarbonate as gas-forming agent and different additives were tested for their usefulness in formulating gastric floating tablets by direct compression method. The physical parameters, in vitro buoyancy, release characteristics and in vivo radiographic study were investigated in this study. The gemifloxacin mesylate floating tablets were prepared using HPMC K4M polymer giving more sustained drug release than the tablet containing HPMC K15M. All these formulations showed floating lag time of 30 to 47 sec and total floating time more than 12 h. The drug release was decreased when polymer concentration increases and gas generating agent decreases. Formulation that contains maximum concen-tration of both HPMC K15M and sodium bicarbonate (F9) showing sufficiently sustained with 99.2% of drug release at 12 h. The drug release from optimized formulation follows Higuchi model that indicates the diffusion controlled release. The best formulation (F9) was selected based on in vitro characteristics and used in vivo radiographic studies by incorporating barium sulphate as a radio-opaque agent and the tablet remained in the stomach for about 6 h.   


2011 ◽  
Vol 61 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Komuravelly Someshwar ◽  
Kalyani Chithaluru ◽  
Tadikonda Ramarao ◽  
K. Kumar

Formulation and evaluation of effervescent floating tablets of tizanidine hydrochloride Tizanidine hydrochloride is an orally administered prokinetic agent that facilitates or restores motility through-out the length of the gastrointestinal tract. The objective of the present investigation was to develop effervescent floating matrix tablets of tizanidine hydrochloride for prolongation of gastric residence time in order to overcome its low bioavailability (34-40 %) and short biological half life (4.2 h). Tablets were prepared by the direct compression method, using different viscosity grades of hydroxypropyl methylcellulose (HPMC K4M, K15M and K100M). Tablets were evaluated for various physical parameters and floating properties. Further, tablets were studied for in vitro drug release characteristics in 12 hours. Drug release from effervescent floating matrix tablets was sustained over 12 h with buoyant properties. DSC study revealed that there is no drug excipient interaction. Based on the release kinetics, all formulations best fitted the Higuchi, first-order model and non-Fickian as the mechanism of drug release. Optimized formulation (F9) was selected based on the similarity factor (f2) (74.2), dissolution efficiency at 2, 6 and 8 h, and t50 (5.4 h) and was used in radiographic studies by incorporating BaSO4. In vivo X-ray studies in human volunteers showed that the mean gastric residence time was 6.2 ± 0.2 h.


2009 ◽  
Vol 59 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Ramesh Bomma ◽  
Rongala Swamy Naidu ◽  
Madhusudan Yamsani ◽  
Kishan Veerabrahma

Development and evaluation of gastroretentive norfloxacin floating tabletsFloating matrix tablets of norfloxacin were developed to prolong gastric residence time, leading to an increase in drug bioavailability. Tablets were prepared by the wet granulation technique, using polymers such as hydroxypropyl methylcellulose (HPMC K4M, HPMC K100M) and xanthan gum. Tablets were evaluated for their physical characteristics,viz., hardness, thickness, friability, and mass variation, drug content and floating properties. Further, tablets were studied forin vitrodrug release characteristics for 9 hours. The tablets exhibited controlled and prolonged drug release profiles while floating over the dissolution medium. Non-Fickian diffusion was confirmed as the drug release mechanism from these tablets, indicating that water diffusion and polymer rearrangement played an essential role in drug release. The best formulation (F4) was selected based onin vitrocharacteristics and was usedin vivoradiographic studies by incorporating BaSO4. These studies revealed that the tablets remained in the stomach for 180 ± 30 min in fasting human volunteers and indicated that gastric retention time was increased by the floating principle, which was considered desirable for the absorption window drugs.


Author(s):  
E. E. Zien El-Deen ◽  
H. A. Yassin

Gabapentin is effective against post-traumatic spinal injury-induced neuropathic pain. It requires high dosage and frequency in the management of neuropathic pain. The present research work was an attempt to formulate and evaluate gabapentin gastro-retentive tablets to prolong gastric residence and increase drug absorption and further increase bioavailability. The floating tablets of gabapentin were prepared in two doses (300 and 600 mg) by using two polymers (hydroxyl propyl methyl cellulose and hydroxyl propyl cellulose). Immediate release tablets of gabapentin containing the same doses were prepared and used as reference formulations. The physicochemical characteristics of the prepared tablets were determined (drug content, weight variation, friability, hardness, thickness and diameter).  Drug release from the prepared tablets was followed and found that by increasing drug concentration in the tablets release rate increases. Floating tablets showed prolonged drug release (over 96%) to more than 15 hrs. Immediate release tablets showed over 97% drug release within 48 min. In-vivo results showed that plasma exposure to gabapentin in animals receiving the drug does not dose proportional and therefore may not reach therapeutically useful levels. AUC0-24 and Cmax in case of 300 mg tablets are more than those in case of 600 mg tablets. The in-vivo release of gabapentin does not correlate with the in-vitro release of the drug.


Author(s):  
Mohini Sihare ◽  
Rajendra Chouksey

The aim of this research was to develop a new hydrophilic matrix system containing meropenem (MEX). Extended-release tablets are usually intended for once-a-day administration with benefits to the patient and lower discontinuation of the therapy. Formulations were developed with hydroxyl propyl methyl cellulose or poly (ethylene oxide) as hydrophilic polymers, with different molecular weights (MWs) and concentrations (20 and 30%). The tablets were found to be stable (6 months at 40 ± 2°C and 75± 5% relative humidity), and the film-coating process is recommended to avoid MEX photo-degradation. The dissolution profiles demonstrated an extended-release of MEX for all developed formulations. Dissolution curves analyzed using the Korsmeyer exponential equation showed that drug release was controlled by both drug diffusion and polymer relaxation or erosion mechanisms. A more erosion controlled system was obtained for the formulations containing lower MW and amount of polymer. With the increase in both MW and amount of polymer in the formulation, the gel layer became stronger, and the dissolution was more drug-diffusion dependent. Formulations containing intermediate MW polymers or high concentration (30%) of low MW polymers demonstrated a combination of extended and complete in vitro drug release. This way, these formulations could provide an increased bioavailability in vivo.


2011 ◽  
Vol 47 (3) ◽  
pp. 545-553 ◽  
Author(s):  
Sathis Kumar Dinakaran ◽  
Santhos Kumar ◽  
David Banji ◽  
Harani Avasarala ◽  
Venkateshwar Rao

The purpose of this research study was to establish ziprasidone HCl NR 40 mg and trihexyphenidyl HCl SR 4mg in the form of bi-layer sustained release floating tablets. The tablets were prepared using sodium HPMC K4M / HPMC K15M as bio-adhesive polymers and sodium bicarbonate acting as a floating layer. Tablets were evaluated based on different parameters such as thickness, hardness, friability, weight variation, in vitro dissolution studies, content of active ingredient and IR studies. The physico-chemical properties of the finished product complied with the specifications. In vitro release from the formulation was studied as per the USP XXIII dissolution procedure. The formulations gave a normal release effect followed by sustained release for 12 h which indicates bimodal release of ziprasidone HCl from the matrix tablets. The data obtained was fitted to Peppas models. Analysis of n values of the Korsmeyer equation indicated that the drug release involved non-diffusional mechanisms. By the present study, it can be concluded that bi-layer tablets of ziprasidone HCl and trihexyphenidyl HCl will be a useful strategy for extending the metabolism and improving the bioavailability of Ziprasidone HCl and Trihexyphenidyl HCl.


Planta Medica ◽  
2018 ◽  
Vol 85 (03) ◽  
pp. 239-248 ◽  
Author(s):  
Anju Benny ◽  
Jaya Thomas

AbstractAlzheimerʼs disease is a multifarious neurodegenerative disease that causes cognitive impairment and gradual memory loss. Several hypotheses have been put forward to postulate its pathophysiology. Currently, few drugs are available for the management of Alzheimerʼs disease and the treatment provides only symptomatic relief. Our aim is to review the relevant in vitro, in vivo, and clinical studies focused toward the potential uses of essential oils in the treatment of Alzheimerʼs disease. Scientific databases such as PubMed, ScienceDirect, Scopus, and Google Scholar from April 1998 to June 2018 were explored to collect data. We have conducted wide search on various essential oils used in different models of Alzheimerʼs disease. Out of 55 essential oils identified for Alzheimerʼs intervention, 28 have been included in the present review. A short description of in vivo studies of 13 essential oils together with clinical trial data of Salvia officinalis, Salvia lavandulifolia, Melissa officinalis, Lavandula angustifolia, and Rosmarinus officinalis have been highlighted. In vitro studies of remaining essential oils that possess antioxidant and anticholinesterase potential are also mentioned. Our literary survey revealed encouraging results regarding the various essential oils being studied in preclinical and clinical studies of Alzheimerʼs disease with significant effects in modulating the pathology through anti-amyloid, antioxidants, anticholinesterase, and memory-enhancement activity.


Sign in / Sign up

Export Citation Format

Share Document