scholarly journals Impacts of winter cover cropping on soil moisture and evapotranspiration in California's specialty crop fields may be minimal during winter months

2022 ◽  
pp. 1-9
Author(s):  
Alyssa DeVincentis ◽  
Samuel Sandoval Solis ◽  
Sloane Rice ◽  
Daniele Zaccaria ◽  
Richard Snyder ◽  
...  

As fresh water supplies become more unreliable, variable and expensive, the water-related implications of sustainable agriculture practices such as cover cropping are drawing increasing attention from California's agricultural communities. However, the adoption of winter cover cropping remains limited among specialty crop growers who face uncertainty regarding the water use of this practice. To investigate how winter cover crops affect soil water and evapotranspiration on farm fields, we studied three systems that span climatic and farming conditions in California's Central Valley: processing tomato fields with cover crop, almond orchards with cover crop, and almond orchards with native vegetation. From 2016 to 2019, we collected soil moisture data (3 years of neutron hydroprobe and gravimetric tests at 10 field sites) and evapotranspiration measurements (2 years at two of 10 sites) in winter cover cropped and control (clean-cultivated, bare ground) plots during winter months. Generally, there were not significant differences in soil moisture between cover cropped and control fields throughout or at the end of the winter seasons, while evapo-transpirative losses due to winter cover crops were negligible relative to clean-cultivated soil. Our results suggest that winter cover crops in the Central Valley may break even in terms of actual consumptive water use. California growers of high-value specialty crops can likely adopt winter cover cropping without altering their irrigation plans and management practices.

2022 ◽  
pp. 1-9
Author(s):  
Alyssa DeVincentis ◽  
Samuel Sandoval Solis ◽  
Sloane Rice ◽  
Daniele Zaccaria ◽  
Richard Snyder ◽  
...  

As fresh water supplies become more unreliable, variable and expensive, the water-related implications of sustainable agriculture practices such as cover cropping are drawing increasing attention from California's agricultural communities. However, the adoption of winter cover cropping remains limited among specialty crop growers who face uncertainty regarding the water use of this practice. To investigate how winter cover crops affect soil water and evapotranspiration on farm fields, we studied three systems that span climatic and farming conditions in California's Central Valley: processing tomato fields with cover crop, almond orchards with cover crop, and almond orchards with native vegetation. From 2016 to 2019, we collected soil moisture data (3 years of neutron hydroprobe and gravimetric tests at 10 field sites) and evapotranspiration measurements (2 years at two of 10 sites) in winter cover cropped and control (clean-cultivated, bare ground) plots during winter months. Generally, there were not significant differences in soil moisture between cover cropped and control fields throughout or at the end of the winter seasons, while evapo-transpirative losses due to winter cover crops were negligible relative to clean-cultivated soil. Our results suggest that winter cover crops in the Central Valley may break even in terms of actual consumptive water use. California growers of high-value specialty crops can likely adopt winter cover cropping without altering their irrigation plans and management practices.


2014 ◽  
Vol 18 (12) ◽  
pp. 5239-5253 ◽  
Author(s):  
I.-Y. Yeo ◽  
S. Lee ◽  
A. M. Sadeghi ◽  
P. C. Beeson ◽  
W. D. Hively ◽  
...  

Abstract. Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990–2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha−1, but decreased to 4.6–10.1 kg ha−1 with cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~ 2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implementation of cover crop programs, in part by helping to target critical pollution source areas for cover crop implementation.


Author(s):  
Barbara Baraibar ◽  
David A. Mortensen ◽  
Mitchell C. Hunter ◽  
Mary E. Barbercheck ◽  
Jason P. Kaye ◽  
...  

2014 ◽  
Vol 30 (5) ◽  
pp. 473-485 ◽  
Author(s):  
Natalie P. Lounsbury ◽  
Ray R. Weil

AbstractOrganic no-till (NT) management strategies generally employ high-residue cover crops that act as weed-suppressing mulch. In temperate, humid regions such as the mid-Atlantic USA, high-residue winter cover crops can hinder early spring field work and immobilize nutrients for cash crops. This makes the integration of cover crops into rotations difficult for farmers, who traditionally rely on tillage to prepare seedbeds for early spring vegetables. Our objectives were to address two separate but related goals of reducing tillage and integrating winter cover crops into early spring vegetable rotations by investigating the feasibility of NT seeding spinach (Spinacia oleracea L.), an early spring vegetable, into winterkilled cover crops. We conducted a four site-year field study in the Piedmont and Coastal Plain regions of Maryland, USA, comparing seedbed conditions and spinach performance after forage radish (FR) (Raphanus sativus L.), a low-residue, winterkilled cover crop, spring oat (Avena sativa L.), the traditional winterkilled cover crop in the area, a mixture of radish and oat, and a no cover crop (NC) treatment. NT seeded spinach after FR had higher yields than all other cover crop and tillage treatments in one site year and was equal to the highest yielding treatments in two site years. Yield for NT spinach after FR was as high as 19 Mg ha−1 fresh weight, whereas the highest yield for spinach seeded into a rototilled seedbed after NC was 10 Mg ha−1. NT seeding spring spinach after a winterkilled radish cover crop is feasible and provides an alternative to both high-residue cover crops and spring tillage.


2001 ◽  
Vol 16 (2) ◽  
pp. 66-72 ◽  
Author(s):  
F.J. Coale ◽  
J.M. Costa ◽  
G.A. Bollero ◽  
S.P. Schlosnagle

AbstractCereal rye is an effective winter cover crop because it accumulates residual soil N and reduces nitrate leaching. Wheat, barley, and triticale are alternative winter small grain species that may be managed as winter cover crops and yet produce marketable commodities. The objectives of this research were to evaluate N recovery capacity and grain yields of wheat, barley, triticale, and cereal rye grown as winter cover crops. Field plots established in 1996 and 1997 at two different locations on Maryland's mid-Atlantic Coastal Plain were amended with annual spring applications of four rates of broiler litter in a randomized complete block design with four replications. Each manure rate plot was divided into four subplots by planting four winter small grain cover crops: wheat, barley, triticale, and cereal rye. Rye cover crop treatments were killed with herbicide when the plants were 30 to 50 cm tall, while the wheat, barley, and triticale treatments continued to grow until grain maturity. Barley, rye, triticale, and wheat cover crops exhibited similar capacities to accumulate soil N, and therefore, reduce the potential for NO3—N leaching to groundwater. At the time of rye kill-down, aerial biomass N accumulation ranged from 11 to 112 kg N ha−1 and soil NO3—N levels were low (<1.5 mg NO3—N kg−1) and relatively uniform across treatments. Average barley, triticale, and wheat grain yields increased with previous broiler litter application rate and initial soil NO3—N concentration. Potential income derived from the grain and straw produced could partially or completely offset cover crop production costs.


Author(s):  
J. Peredo ◽  
C. Wayman ◽  
B. Whong ◽  
A. Thieme ◽  
L. R. Kline ◽  
...  

Abstract. Winter cover crops have been shown to limit erosion and nutrient runoff from agricultural land. To promote their usage, the Maryland Department of Agriculture (MDA) subsidizes farmers who plant cover crops. Conventional verification of cover crop planting and analysis of subsequent crop performance requires on-the-ground fieldwork, which is costly and labor intensive. In partnership with the MDA, NASA's DEVELOP program utilized imagery from Landsat 5, Landsat 8, and the European Space Agency’s Sentinel-2 to create a decision support tool for satellite-based monitoring of cover crop performance throughout Maryland. Our teams created CCROP, an interactive graphical user interface, in Google Earth Engine which analyzes satellite imagery to calculate the normalized difference vegetation index (NDVI) of fields across the state. Linear regression models were applied to convert NDVI to estimates of crop biomass and percent green ground cover, with measure of fit (R2) values ranging from 0.4 to 0.7. These crop metrics were implemented into an interactive filtering tool within CCROP which allows users to examine cover crop performance based on a variety of growing parameters. CCROP also includes a time series analysis routine for examining the progression of NDVI throughout the spring to help determine farmer-induced termination dates of cover crops. With this decision support tool, the MDA can analyze the effectiveness of cover crops throughout the state with reduced need to manually spot-check enrolled production fields, and can identify variables influencing overall cover crop performance to optimize implementation of their winter cover crop program via adaptive management approaches.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 995 ◽  
Author(s):  
Milan Panth ◽  
Fulya Baysal-Gurel ◽  
Terri Simmons ◽  
Karla M. Addesso ◽  
Anthony Witcher

Diseases caused by soilborne pathogens are a major limitation to field grown nursery production. The application of cover crops for soilborne disease management has not been widely investigated in a woody ornamental nursery production system. The objective of this study was to explore the impact of winter cover crops usage on soilborne disease management in that system. Soils from established field plots of red maple (Acer rubrum L.) with and without winter cover crops (crimson clover (Trifolium incarnatum L.) or triticale (× Triticosecale W.)) were sampled following the senescence of the cover crops. Separate bioassays were performed using red maple cuttings on inoculated (with Phytopythium vexans, Phytophthora nicotianae or Rhizoctonia solani) and non-inoculated field soils. The results indicated that winter cover crop usage was helpful for inducing soil disease suppressiveness. There was lower disease severity and pathogen recovery when the cover crops were used compare to the non-cover cropped soil. However, there were no differences in maple plant fresh weight and root weight between the treatments. The rhizosphere pseudomonad microbial population was also greater when the cover crops were used. Similarly, the C:N ratio of the soil was improved with the cover crop usage. Thus, in addition to improving soil structure and reducing erosion, cover crops can provide improved management of soilborne diseases. Therefore, stakeholders can consider cover crop usage as an alternative sustainable management tool against soilborne diseases in field nursery production system.


2019 ◽  
Vol 195 ◽  
pp. 104430 ◽  
Author(s):  
Bharat Sharma Acharya ◽  
Syam Dodla ◽  
Lewis. A. Gaston ◽  
Murali Darapuneni ◽  
Jim J. Wang ◽  
...  

2013 ◽  
Vol 10 (11) ◽  
pp. 14229-14263 ◽  
Author(s):  
I.-Y. Yeo ◽  
S. Lee ◽  
A. M. Sadeghi ◽  
P. C. Beeson ◽  
W. D. Hively ◽  
...  

Abstract. Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils and those that were more frequently used to grow corn had a higher potential for nitrate leaching and export to the waterways. This study supports the effective implement of winter cover crop programs, in part by helping to target critical pollution source areas for winter cover crop implementation.


HortScience ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 664-668 ◽  
Author(s):  
John Z. Burket ◽  
Delbert D. Hemphill ◽  
Richard P. Dick

Cover crops hold potential to improve soil quality, to recover residual fertilizer N in the soil after a summer crop that otherwise might leach to the groundwater, and to be a source of N for subsequently planted vegetable crops. The objective of this 5-year study was to determine the N uptake by winter cover crops and its effect on summer vegetable productivity. Winter cover crops [red clover (Trifolium pratense L.), cereal rye (Secale cereale L. var. Wheeler), a cereal rye/Austrian winter pea (Pisum sativum L.) mix, or a winter fallow control] were in a rotation with alternate years of sweet corn (Zea mays L. cv. Jubilee) and broccoli (Brassica oleracea L. Botrytis Group cv. Gem). The subplots were N rate (zero, intermediate, and as recommended for vegetable crop). Summer relay plantings of red clover or cereal rye were also used to gain early establishment of the cover crop. Cereal rye cover crops recovered residual fertilizer N at an average of 40 kg·ha-1 following the recommended N rates, but after 5 years of cropping, there was no evidence that the N conserved by the cereal rye cover crop would permit a reduction in inorganic N inputs to maintain yields. Intermediate rates of N applied to summer crops in combination with winter cover crops containing legumes produced vegetable yields similar to those with recommended rates of N in combination with winter fallow or cereal rye cover crops. There was a consistent trend (P < 0.12) for cereal rye cover crops to cause a small decrease in broccoli yields as compared to winter fallow.


Sign in / Sign up

Export Citation Format

Share Document