scholarly journals Fine Details Obtained by 3D Printing and Using Polymers

2018 ◽  
Vol 55 (4) ◽  
pp. 474-477
Author(s):  
Laurentiu Slatineanu ◽  
Oana Dodun ◽  
Gheorghe Nagit ◽  
Margareta Coteata ◽  
Gheorghe Bosoanca ◽  
...  

The three-dimensional printing is a manufacturing method involving the addition of materials by using certain principles valid in printing techniques. There are various techniques of a three-dimensional printing method and the most of them could be applied inclusively to generate objects of polymers. The objective of the research presented in this paper was to analyze the capabilities of 3D printing process or equipment of generating fine details and to identify a way of evaluating these capabilities when using polyester PLA as filament material. The systemic analysis of the printing techniques which use a fused polymer filament deposition showed that there are some groups of factors able to affect the obtaining of fine details. An experimental research was designed in order to highlight the influence exerted by the diameter of the nozzle orifice and by the values of sharp angles of isosceles triangles on the heights of these triangles, thus obtaining an image concerning the possibilities of generating sharp edges by three-dimensional printing. To evaluate the capacity of the 3D printing process of obtaining thin walls, a spiral including linear segments with a decreasing thickness from 1 mm was also achieved on the test piece. By mathematical processing of the experimental results using a specialized software, empirical mathematical models were determined to evaluate the intensity of influences exerted by the two process input factors on the heights corresponding to isosceles triangles characterized by sharp angles.

MRS Bulletin ◽  
2021 ◽  
Author(s):  
Xinran Zhou ◽  
Pooi See Lee

AbstractThree-dimensional (3D) printing has become an important fabrication method for soft robotics, due to its ability to make complex 3D structures from computer designs in simple steps and multimaterial co-deposition ability. In this article, the application of 3D printing techniques in the fabrication of four types of tactile sensors commonly used in soft robotics, including the piezoresistive tactile sensor, capacitive tactile sensor, piezoelectric tactile sensor, and triboelectric tactile sensor, will be discussed. The 3D printing mechanism, material, and structure for each type of sensor will be introduced, and the perspectives on the future potential of 3D printable tactile sensors will be discussed.


2018 ◽  
Vol 213 ◽  
pp. 01011 ◽  
Author(s):  
Ningda Han ◽  
Jun Cheng ◽  
Jiquan Yang ◽  
Yijian Liu ◽  
Wuyun Huang

The rapid and low-cost manufacturing of continuous Carbon Fiber Reinforced Polymer (CFRP) composites using 3D printing technology is a hot topic in the field of composite materials’ research. Due to the continuity and infusibility of the long carbon fiber, a series of problems such as loosening of fiber, breakage, and nozzle clogging occurred in the printing process, which result in poor surface quality and performance in the printed product. This paper aims to solve these problems based on the researches and optimizations of three-dimensional printing technology for continuous CFRP composite components. Firstly, the coupling mechanism of continuous fiber and resin polymer in the flow path of nozzle is analyzed, the finite element simulation models of flow field and temperature field of CFRP three-dimensional printing are established by using ANSYS CFX software, and the coupling characteristics and interface performance in the printing process are studied. Then, based on the results of simulation analysis, a modification method of the surface coating film is applied, and a special modification solution is configured to modify the surface of the carbon fiber so as to increase its strength and bondability with the molten resin. Finally, the mechanical structure of the three-dimensional printing system of continuous CFRP components is designed to achieve the synchronization of printing and fiber modification. Considering the continuity of continuous carbon fiber, this paper proposed a new method of printing path design called “unicursal” for continuous CFRP parts, that is, when designing and planning a three-dimensional print path, it ensured that there is no interruption in the printing process, so as to achieve carbon fiber continuity in composite parts. The reliability and superiority of the printing system designed in this paper are confirmed by printing of the composite parts.


Author(s):  
Shangting You ◽  
Jiaao Guan ◽  
Jeffrey Alido ◽  
Henry H. Hwang ◽  
Ronald Yu ◽  
...  

Abstract When using light-based three-dimensional (3D) printing methods to fabricate functional micro-devices, unwanted light scattering during the printing process is a significant challenge to achieve high-resolution fabrication. We report the use of a deep neural network (NN)-based machine learning (ML) technique to mitigate the scattering effect, where our NN was employed to study the highly sophisticated relationship between the input digital masks and their corresponding output 3D printed structures. Furthermore, the NN was used to model an inverse 3D printing process, where it took desired printed structures as inputs and subsequently generated grayscale digital masks that optimized the light exposure dose according to the desired structures’ local features. Verification results showed that using NN-generated digital masks yielded significant improvements in printing fidelity when compared with using masks identical to the desired structures.


Author(s):  
K. G. Siree ◽  
T. M. Amulya ◽  
T. M. Pramod Kumar ◽  
S. Sowmya ◽  
K. Divith ◽  
...  

Three-dimensional (3D) printing is a unique technique that allows for a high degree of customisation in pharmacy, dentistry and in designing of medical devices. 3D printing satiates the increasing exigency for consumer personalisation in these fields as custom-made medicines catering to the patients’ requirements are novel advancements in drug therapy. Current research in 3D printing indicates towards reproducing an organ in the form of a chip; paving the way for more studies and opportunities to perfecting the existing technique. In addition, we will also attempt to shed light on the impact of 3D printing in the COVID-19 pandemic.


2016 ◽  
Author(s):  
Hongxing Luo ◽  
Zhongmin Wang

We comment on the recent developments and problems of three-dimensional printing in cardiology. Since there are currently no standards or consensuses for 3D printing in clinical medicine and the technology is at its infancy in cardiology, it’s very important to detail the procedures to allow more similar studies to further our understandings of this novel technology. Most studies have employed computed tomography to obtain source data for 3D printing, the use of real-time 3D transesophageal echocardiography for data acquisition remains rare, so it would be very valuable and inspiring to detail the image postprocessing steps, or the reliability of the study results will be doubtful.


2018 ◽  
Vol 15 (140) ◽  
pp. 20170868 ◽  
Author(s):  
Keigo Nakamura ◽  
Tetsuya Hisanaga ◽  
Koichi Fujimoto ◽  
Keiji Nakajima ◽  
Hirofumi Wada

The female sex organ of the liverwort ( Marchantia polymorpha ) has a characteristic parasol-like form highly suitable for collecting water droplets containing sperm for fertilization. Motivated by this observation and using three-dimensional printing techniques, we develop a parasol-like rigid object that can grab, transport and release water droplets of a maximum size of about 1 cm. By combining experiments and scaling theory, we quantify the object's fundamental wetting and fluid dynamical properties. We construct a stability phase diagram and suggest that it is largely insensitive to properties of liquids such as surface tension and viscosity. A simple scaling argument is developed to explain the phase boundary. Our study provides basic design rules of a simple pipette-like device with bubble-free capture and drop of liquids, which can be used in laboratory settings and has applications within soft robotics. Through systematic experimental investigations, we suggest the optimal design criteria of the liverwort-inspired object to achieve maximal pipetting performance. We also provide, based on our scalable model experiments, a biological implication for the mechanistic advantage of this structure in liverwort reproduction.


Sign in / Sign up

Export Citation Format

Share Document