scholarly journals Copper Based Bulk Metallic Glasses for Medical Devices

2019 ◽  
Vol 56 (4) ◽  
pp. 700-704
Author(s):  
Carmen Opris ◽  
Cosmin Codrean ◽  
Dragos Buzdugan ◽  
Petru Hididis

Bulk metallic glasses (BMGs) represent a viable alternative for replacing classic materials used in medical devices. This paper presents the research conducted in order to obtain copper based BMGs using two different chemical compositions: Cu48Zr47Al5 and Cu45Zr45Al5Ag5. The samples were obtained by copper mold casting and their structure and properties were investigated using X-Ray diffraction (XRD), differential scanning calorimetry (DSC) and optical microscopy.

2008 ◽  
Vol 23 (4) ◽  
pp. 941-948 ◽  
Author(s):  
Z.W. Zhu ◽  
S.J. Zheng ◽  
H.F. Zhang ◽  
B.Z. Ding ◽  
Z.Q. Hu ◽  
...  

Different bulk metallic glasses (BMGs) were prepared in ductile Cu47.5Zr47.5Al5, Zr62Cu15.4Ni12.6Al10, and brittle Zr55Ni5Al10Cu30 alloys by controlling solidification conditions. The achieved microstructures were characterized by x-ray diffraction, differential scanning calorimetry, transmission electron microscopy, and synchrotron- based high-energy x-ray diffraction. Monolithic BMGs obtained by high-temperature injection casting are brittle, while BMGs bearing some nanocrystals with the size of 3 to 7 nm and 2 to 4 nm, obtained by low-temperature injection casting and in situ suction casting, respectively, exhibit good plasticity. It indicates that the microstructures of BMGs are closely affected by the solidification conditions. Controlling the solidification conditions could improve the plasticity of BMGs.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 729
Author(s):  
Junhyub Jeon ◽  
Namhyuk Seo ◽  
Hwi-Jun Kim ◽  
Min-Ha Lee ◽  
Hyun-Kyu Lim ◽  
...  

Fe-based bulk metallic glasses (BMGs) are a unique class of materials that are attracting attention in a wide variety of applications owing to their physical properties. Several studies have investigated and designed the relationships between alloy composition and thermal properties of BMGs using an artificial neural network (ANN). The limitation of the wide-scale use of these models is that the required composition is yet to be found despite numerous case studies. To address this issue, we trained an ANN to design Fe-based BMGs that predict the thermal properties. Models were trained using only the composition of the alloy as input and were created from a database of more than 150 experimental data of Fe-based BMGs from relevant literature. We adopted these ANN models to design BMGs with thermal properties to satisfy the intended purpose using particle swarm optimization. A melt spinner was employed to fabricate the designed alloys. X-ray diffraction and differential thermal analysis tests were used to evaluate the specimens.


1986 ◽  
Vol 80 ◽  
Author(s):  
J. S. Cantrell ◽  
R. C. Bowman

AbstractDifferential scanning calorimetry (DSC) and x-ray diffraction (XRD) measurements were performed on a-Zr2 PdHx, a-Zr3 RhHx, a-Zr76 Fe24 Hx, and a- Zr2NiHx to assess the effects of hydrogen on their thermal stabilities. Only exothermic DSC peaks were observed for the hydrogen-free glasses and are shown to correspond to the formation of crystalline intermetallic phases. On the other hand, heating of the amorphous hydrides gives decomposition reactions with the generation of ZrHx (1.5 <x < 2.0) and either free metal (e.g., Rh) or a Zr-depleted intermetallic (e.g., ZrPd). With the exception of the Zr2 PdHx samples, hydrogenation significantly decreases the thermal stabilities (i.e., the exothermic transitions occur at lower temperatures in the amorphous hydrides). Endothermic peaks, which are associated with hydrogen evolution from the glass, are observed when the hydrogen-to-metal ratios approach unity.


2012 ◽  
Vol 490-495 ◽  
pp. 3868-3873 ◽  
Author(s):  
Xiao Hong Yang ◽  
Xi Peng Nie ◽  
Jian Zhong Jiang

Bulk metallic glasses (BMGs) of Cu45Zr48-xAl7Tix with x= 0, 1.5, and 3 at.% were prepared by copper mould casting. The corrosion resistance of the BMGs with different Ti contents was examined by potentiodynamic polarization tests and weight loss measurements in 1 N NaOH, 1 N H2SO4, 1 N H2SO4 + 0.01 N NaCl and 0.5 N NaCl solutions, respectively. The newly-developed BMGs’ corrosion resistance in Cl-- or both H+ and Cl--ions containing solutions can be greatly enhanced. The influence of Ti addition on glass forming ability (GFA) and thermal stability was investigated by x-ray diffraction and differential scanning calorimetry in detail. The alloy containing 1.5 at.% Ti exhibits the largest GFA, the critical size comes up to 10 mm in diameter.


2010 ◽  
Vol 13 (1-2) ◽  
pp. 38-42 ◽  
Author(s):  
Mihai Stoica ◽  
Andràs Bàrdos ◽  
Stefan Roth ◽  
Lajos K. Varga ◽  
Ludwig Schultz ◽  
...  

2012 ◽  
Vol 43 (5) ◽  
pp. 1558-1563 ◽  
Author(s):  
J. Bednarcik ◽  
L. Y. Chen ◽  
X. D. Wang ◽  
J. Z. Jiang ◽  
H. Franz

2009 ◽  
Vol 24 (2) ◽  
pp. 316-323 ◽  
Author(s):  
C.L. Qin ◽  
W. Zhang ◽  
K. Asami ◽  
N. Ohtsu ◽  
A. Inoue

Bulk metallic glasses (BMGs) with high thermal stability and good corrosion resistance were synthesized in the (Cu0.6Hf0.25Ti0.15)100−x−yNiyNbx system by copper mold casting. The addition of Ni element causes an extension of a supercooled liquid region (ΔTx = Tx – Tg) from 60 K for Cu60Hf25Ti15 to 70 K for (Cu0.6Hf0.25Ti0.15)95Ni5. The simultaneous addition of Ni and Nb to the alloy is effective in improving synergistically the corrosion resistance in 1 N HCl, 3 mass% NaCl, and 1 N H2SO4 + 0.01 N NaCl solutions. The highly protective Hf-, Ti-, and Nb-enriched surface film is formed by the rapid initial preferential dissolution of Cu and Ni, which is responsible for the high corrosion resistance of the alloys in the solutions examined.


2019 ◽  
Vol 3 (2) ◽  
pp. 10-17
Author(s):  
Andromeda Dwi Laksono ◽  
Rifqi Aulia Tanjung

Bulk Metallic Glass (BMG) memiliki sifat mekanik, magnetik, kimia dan fisik yang berbeda dengan paduan polikristalin karena susunan internal atomnya yang tidak teratur. Sehingga, BMG memiliki kekuatan mekanik yang baik, kekerasan yang tinggi, ketahanan terhadap aus dan korosi yang tinggi, dan kehalusan permukaan yang baik. Berdasarkan sifat tersebut, BMG memiliki kelayakan yang menjanjikan di bidang industry. Dalam penelitian ini, metode pengecoran cetakan di tembaga digunakan untuk menyiapkan BMG paduan Cu45Zr45Al5Ag5. Paduan dileburkan ulang dengan pendinginan super cepat menggunakan mesin pendingin di bawah temperatur -25 oC. Dengan metode pengecoran cetakan di tembaga, sampel ukuran besar berbentuk batang dipotong dengan diameter 2 mm hingga 4 mm dan panjang 30 mm. Batang kemudian dipotong lagi menjadi spesimen berbentuk cakram. Untuk memastikan apakah sampel adalah BMG atau tidak, sampel dievaluasi dengan Scanning Electron Microscopy (SEM), Energy Dispersion Spectrometer (EDS), Differential Scanning Calorimetry (DSC), Electron Probe X-ray Micro Analyzer (EPMA), dan X -ray Difraction (XRD). Hasilnya dibahas dalam penelitian ini. Kata Kunci: Bulk Metallic Glasses, Cu45Zr45Al5Ag5, Pengecoran Cetakan di Tembaga.


2007 ◽  
Vol 22 (9) ◽  
pp. 2454-2459 ◽  
Author(s):  
X.D. Wang ◽  
L. Yang ◽  
J.Z. Jiang ◽  
K. Saksl ◽  
H. Franz ◽  
...  

We present evidence that a minor adjustment in Zr/Ni concentration ratio can dramatically enhance the plasticity of monolithic Zr-based bulk metallic glasses (BMGs) from about 2.2% for Zr65Al8Ni10Cu17 BMG to 14% for Zr62Al8Ni13Cu17 BMG. No deformation-induced nanocrystallization appears in a 55% strained Zr62Al8Ni13Cu17 BMG without catastrophic failure while pre-existing nanocrystals in Zr65Al8Ni10Cu17 BMG result in its limited plasticity. Also note that the stability of Zr62Al8Ni13Cu17 BMG against crystallization upon deformation is somewhat higher than that of Zr65Al8Ni10Cu17 BMG. As determined by x-ray diffraction using synchrotron radiation, the enhanced plasticity of Zr62Al8Ni13Cu17 BMG seems to be related to the relative homogeneity of the amorphous structure.


2008 ◽  
Vol 368-372 ◽  
pp. 1143-1145 ◽  
Author(s):  
Ding Fan ◽  
Yao Ning Sun ◽  
Min Zheng ◽  
Jian Bin Zhang ◽  
Yu Feng Zheng

Laser cladding experiment was carried out with a 5 kW continuous wave CO2 laser by preplacing Ni75Si25 and Ni78Si13Ti9 powders onto Ni-based superalloy substrate. The microstructure of the specimens was monitored by using optical and scanning electron microscopy. The chemical compositions of the alloys and their phases were obtained using X-ray diffraction and energy dispersive x-ray spectroscopy. The phase transformation temperatures were determined by non-isothermal differential scanning calorimetry tests. The microhardness of the laser cladded sample was measured.


Sign in / Sign up

Export Citation Format

Share Document