scholarly journals Synthesis and Characterization of CuPc-PEPC Composite Thin Films and Photovoltaic Devices by Drop Casting Method

2021 ◽  
Vol 57 (4) ◽  
pp. 134-144
Author(s):  
Tamara Potlog ◽  
Vadim Furtuna ◽  
Ion Lungu ◽  
Stefan Robu ◽  
Galina Dragalina ◽  
...  

Using a drop casting method, stronger absorbent and photosensitive composite thin films based on a copper-phthalocyanine (CuPc) oligomer and a poly (N-epoxypropylcarbazole) (PEPC) copolymer were developed. Morphology, structural behavior and optical properties of CuPc:PEPC composite thin films have been studied using scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-VIS spectroscopy. The SEM images of pure CuPc organic thin films show the formation of some elongated shapes, while the morphology of CuPc:PEPC composite thin films is mainly controlled by the content of CuPc. XRD analysis of the CuPc:PEPC composite thin films reveal good crystallinity and the beta-copper phthalocyanine phase. Study of optical properties of CuPc:PEPC composite thin films after annealing in hydrogen atmosphere show decrease of the average optical transmittance. In addition, the broadening of the absorption bands increases the light harvesting capacity of the composite material for photovoltaic applications.

Author(s):  
Minakshi Chaudhary ◽  
Yogesh Hase ◽  
Ashwini Punde ◽  
Pratibha Shinde ◽  
Ashish Waghmare ◽  
...  

: Thin films of PbS were prepared onto glass substrates by using a simple and cost effective CBD method. Influence of deposition time on structural, morphology and optical properties have been investigated systematically. The XRD analysis revealed that PbS films are polycrystalline with preferred orientation in (200) direction. Enhancement in crystallinity and PbS crystallite size has been observed with increase in deposition time. Formation of single phase PbS thin films has been further confirmed by Raman spectroscopy. The surface morphology analysis revealed the formation of prismatic and pebble-like PbS particles and with increase in deposition time these PbS particles are separated from each other without secondary growth. The data obtained from the EDX spectra shows the formation of high-quality but slightly sulfur rich PbS thin films over the entire range of deposition time studied. All films show increase in absorption with increase in deposition time and a strong absorption in the visible and sub-band gap regime of NIR range of the spectrum with red shift in band edge. The optical band gap shows decreasing trend, as deposition time increases but it is higher than the band gap of bulk PbS.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 821
Author(s):  
Aneeqa Bashir ◽  
Mehwish Farooq ◽  
Abdul Malik ◽  
Shahzad Naseem ◽  
Arshad Saleem Bhatti

An environmentally friendlier solution processing has been introduced to fabricate zirconium oxide (ZrO2) films on quartz substrates, using spin coating of simple water-based solution. The films cured with UV-A = 330 nm for different times (40, 80, 120 min) were investigated for structural and optical properties and compared with thermally annealed film (at 350 °C). XRD and Raman spectroscopy showed amorphous structure in all the samples with no significant phase transformation with UV-A exposure. AFM microscopy showed smooth and crack free films with surface roughness ≤2 nm that reduced with UV-A exposure. Ultraviolet-visible (UV–Vis) spectroscopy demonstrated optical transmittance ≥88% and energy band gap variations as 4.52–4.70 eV. Optical constants were found from spectroscopic ellipsometry (SE). The refractive index (n) values, measured at 470 nm increased from 1.73 to 2.74 as the UV-A exposure prolonged indicating densification and decreasing porosity of the films. The extinction coefficient k decreased from 0.32 to 0.19 indicating reduced optical losses in the films under the UV-A exposure. The photoluminescence (PL) spectra exhibited more pronounced UV emissions which grew intense with UV-A exposure thereby improving the film quality. It is concluded that UV-A irradiation can significantly enhance the optical properties of ZrO2 films with minimal changes induced in the structure as compared to thermally treated film. Moreover, the present work indicates that water-based solution processing has the potential to produce high-quality ZrO2 films for low cost and environmental friendlier technologies. The work also highlights the use of UV-A radiations as an alternate to high temperature thermal annealing for improved quality.


2017 ◽  
Author(s):  
Rajnarayan De ◽  
S. Tripathi ◽  
S. C. Naidu ◽  
C. Prathap ◽  
J. Tripathi ◽  
...  

2013 ◽  
Vol 829 ◽  
pp. 917-921
Author(s):  
Saber Ghannadi ◽  
Hossein Abdizadeh ◽  
Mohammad Reza Golobostanfard

Titania thin films were prepared by electrophoretic deposition at various deposition times (1, 5 and 10 min) in constant applied potential (5 V). For this purpose, modified titania sol was prepared as a colloidal suspension. The influence of deposition time on the thickness and optical properties of titania films was investigated. Scanning electron microscope images illustrate compact and homogeneous titania films deposited on FTO substrates. The results show that the film thickness increases with increasing the deposition time. It could be inferred from UV-Vis spectroscopy that increasing the thickness of deposited film causes higher absorbance at UV region. Also, increasing the deposition time from 1 to 5 min leads to increase in optical band gap of the deposited films.


2004 ◽  
Vol 468 (1-2) ◽  
pp. 28-31 ◽  
Author(s):  
Won Hoe Koo ◽  
Soon Moon Jeoung ◽  
Sang Hun Choi ◽  
Sung Jin Jo ◽  
Hong Koo Baik ◽  
...  

Author(s):  
Emna Gnenna ◽  
Naoufel Khemiri ◽  
Minghua Kong ◽  
Maria Isabel Alonso ◽  
Mounir Kanzari

Sb2S3 powder was successfully synthesized by solid state reaction technique using high-purity elemental antimony and sulfur. Sb2S3 thin films were deposited on unheated glass substrates by one step thermal evaporation and annealed under vacuum atmosphere for 2 hours at different temperatures 150, 200 and 250 °C. Different characterization techniques were used to better understand the behavior of the Sb2S3 material. X-ray diffraction (XRD) and Raman spectroscopy confirmed the formation of pure Sb2S3 powder with lattice parameters a = 11.07 Å, b = 11.08 Å and c = 3.81 Å. The effect of vacuum annealing temperature on the properties of the films was studied. XRD analysis revealed that as-deposited and annealed films at 150ºC were amorphous in nature whereas those annealed at T ≥ 200°C were polycrystalline with a preferred orientation along (201) plane. The crystallite size of the polycrystalline films showed a decrease from 75.8 to 62.9 nm with the increase of the annealing temperature from 200 to 250 °C. The Raman analysis showed several peaks corresponding to the stibnite Sb2S3 phase. The surface morphology of the films was examined by atomic force microscopy (AFM). The surface roughness decreases slightly as the transformation from the amorphous to the crystalline phase occurs. The chemical compositions of Sb2S3 films were analyzed by energy dispersive X-ray spectroscopy (EDS), revealing that all films were Sb-rich. The optical parameters were estimated from the transmittance and reflectance spectra recorded by UV-Vis spectroscopy. A reduction in the direct band gap energy from 2.12 to 1.70 eV with the increase of annealing temperature was also found.


ACS Omega ◽  
2020 ◽  
Vol 5 (16) ◽  
pp. 9224-9232
Author(s):  
Eric Kumi Barimah ◽  
Sri Rahayu ◽  
Marcin W. Ziarko ◽  
Nikolaos Bamiedakis ◽  
Ian H. White ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document