Effect of vacuum annealing on the properties of one step thermally evaporated Sb2S3 thin films for photovoltaic applications

Author(s):  
Emna Gnenna ◽  
Naoufel Khemiri ◽  
Minghua Kong ◽  
Maria Isabel Alonso ◽  
Mounir Kanzari

Sb2S3 powder was successfully synthesized by solid state reaction technique using high-purity elemental antimony and sulfur. Sb2S3 thin films were deposited on unheated glass substrates by one step thermal evaporation and annealed under vacuum atmosphere for 2 hours at different temperatures 150, 200 and 250 °C. Different characterization techniques were used to better understand the behavior of the Sb2S3 material. X-ray diffraction (XRD) and Raman spectroscopy confirmed the formation of pure Sb2S3 powder with lattice parameters a = 11.07 Å, b = 11.08 Å and c = 3.81 Å. The effect of vacuum annealing temperature on the properties of the films was studied. XRD analysis revealed that as-deposited and annealed films at 150ºC were amorphous in nature whereas those annealed at T ≥ 200°C were polycrystalline with a preferred orientation along (201) plane. The crystallite size of the polycrystalline films showed a decrease from 75.8 to 62.9 nm with the increase of the annealing temperature from 200 to 250 °C. The Raman analysis showed several peaks corresponding to the stibnite Sb2S3 phase. The surface morphology of the films was examined by atomic force microscopy (AFM). The surface roughness decreases slightly as the transformation from the amorphous to the crystalline phase occurs. The chemical compositions of Sb2S3 films were analyzed by energy dispersive X-ray spectroscopy (EDS), revealing that all films were Sb-rich. The optical parameters were estimated from the transmittance and reflectance spectra recorded by UV-Vis spectroscopy. A reduction in the direct band gap energy from 2.12 to 1.70 eV with the increase of annealing temperature was also found.

2012 ◽  
Vol 326-328 ◽  
pp. 583-586
Author(s):  
R. Gheriani ◽  
Raouf Mechiakh

The mainly property of thin solid films technologies is their adhesion to the substrates. Because of its good wear resistance and its low coefficient of friction against steel, TiC is an attractive coating material for wear applications such as bearing components. The adhesion of TiC coatings, however suffers from insufficient reproducibility, which is probably due to uncontrolled process parameters. In our work pure titanium thin films of approximately 0.6 µm in thickness were prepared on 100C6 stainless steel substrates by cathodic sputtering. The samples were subjected to secondary vacuum annealing at a temperature between 400 and 1000°C for 30 min. The reaction between substrates and thin films was characterized using an x-ray diffractometer (XRD). Surface morphology and elements diffusion evaluations were carried out by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The interaction substrates-thin films is accompanied by nucleation and growth of titanium carbide as a function of annealing temperature. By the SEM and EDS results, it appears clearly that the diffusion of manganese to the external layers leads to the destruction of adhesion especially at high temperatures.


2014 ◽  
Vol 21 (05) ◽  
pp. 1450073 ◽  
Author(s):  
SOMAYEH AZIZI ◽  
HAMID REZAGHOLIPOUR DIZAJI ◽  
MOHAMMAD HOSSEIN EHSANI ◽  
SEYED FEYZOLAH GHAVAMI MIRMAHALLE

Cd 0.8 Zn 0.2 S thin films deposited on glass substrates by thermal evaporation method were annealed at different temperatures for the first time in order to investigate annealing effect on optical properties. The compositional, structural of nanoparticles precursor synthesized using microwave irradiation method and optical properties of the films were studied using energy dispersive X-ray (EDX), X-ray diffraction, transmission electron microscopy (TEM), and UV-visible spectrophotometer techniques. The annealed films were found to have hexagonal Wurtzite structure with strong preferential orientation along the (002) diffraction peak. Important optical parameters such as extinction coefficient and refractive index revealed the effect of heat treatment on the deposited thin layers. A reduction in the band gap energy from 2.41 eV to 2.29 eV was observed for the annealed samples.


2012 ◽  
Vol 9 (1) ◽  
pp. 294-300 ◽  
Author(s):  
Raji Koshy ◽  
C. S. Menon

The effect of vacuum annealing temperature on optical and electrical properties of vacuum evaporated F16CuPc thin films have been studied spectrophotometer and Kiethely electrometer respectively. The band gap energy both fundamental and excitonic remains unchanged when the annealing temperature increased. The optical constants of thin films are obtained by means of thin film spectrophotometry. From the electrical study, the activation energies of the films, in the intrinsic region and impurity region have been determined from the Arrhenious plots of lnσversus1000/T. Optical data have been obtained from both absorption and reflectivity spectra over the wavelength range 200-800 nm. The absorption coefficient α and extinction coefficient k are estimated from the spectrum. The mechanism of optical absorption follows the rule of direct transition. Using α and k, the refractive index and the dielectric constants are determined. The SEM investigations are F16CuPc thin films are expected to find application in the fabrication of optoelectronic devices such as organic transistors and LED devices.


1970 ◽  
Vol 33 (2) ◽  
pp. 179-188
Author(s):  
MRA Bhuiyan ◽  
DK Saha ◽  
SM Firoz Hasan

In this study, AgGaSe2 (AGS) thin films were formed onto cleaned glass substrates by using the stacked elemental layer (SEL) deposition technique in vacuum. The films were prepared at the post-deposition annealing temperature from 100 to 350°C for 15 min duration. The atomic composition of the films was measured by energy dispersive analysis of X-ray (EDAX) method. The films ascertain the compositional uniformity. The X-ray diffraction (XRD) has been employed to study the structure of the films. The structures of the films are found to be polycrystalline in nature. The lattice parameters, grain size, strain and dislocation densities of the films were calculated. Optical characteristics of the films were ascertained by spectrophotometer in the photon wavelength ranging between 300 and 2500 nm. The transmittance was found to increase with the increase of annealing temperature. The transmittance falls steeply with decreasing wavelength. It revealed that AGS films have considerable absorption throughout the wavelength region from 400 to 800 nm. The optical band gap energy has been evaluated. Two possible direct allowed and direct forbidden transitions have been observed for all the AGS films in visible region. The former varied from 1.67 to 1.75 eV and the later from 2.05 to 2.08 eV, depending on the post-deposition annealing temperature of the films. DOI: 10.3329/jbas.v33i2.4101 Journal of Bangladesh Academy of Sciences, Vol. 33, No. 2, 179-188, 2009


2021 ◽  
Vol 16 ◽  
pp. 1-6
Author(s):  
ABDUL ISMAIL ABDUL RANI ◽  
Muhammad Afif Abd Rani ◽  
Samat Iderus ◽  
Mohd Shahril Osman ◽  
Norjannah Yusop ◽  
...  

Polytriarylamine (PTAA) is a promising yet trending organic semiconductor material in which has unique characteristics that are low-cost fabrication, flexible and stable in room condition. The unique characteristic of PTAA thin films have attracted researchers to explore more on its ability as future green technology solutions. In this works, the effect of annealing temperature towards PTAA thin films are focused. PTAA thin films is fabricated by solution processed technique and sintered onto the glass substrate by spin coating method. The spin coating speed are 1000 RPM to 5000 RPM. The PTAA thin films are further annealed for an hour with temperatures of 80 oC, 120 oC and 150 oC. It is shown that grain size of thin films are increasing as the temperature increased based on XRD analysis. As for 1000 to 5000 RPM, the highest grain size obtain are 26.46 nm, 31.34 nm, 37.19 nm, 39.96 nm and 42.72 nm, respectively. Optical characteristic also reveals that band gap energy value is perpendicular to the increasing in temperature obtain from the UV-Vis spectrum. The results strongly show that annealing temperature had significantly affected both structural and optical properties of PTAA thin films.


2015 ◽  
Vol 1109 ◽  
pp. 181-185 ◽  
Author(s):  
Mohd Firdaus Malek ◽  
Mohamad Hafiz Mamat ◽  
M.Z. Musa ◽  
M. Rusop

Multilayered thin films of aluminum-doped ZnO (Al:ZnO) have been deposited by the sol-gel dip coating technique. Experimental results indicated that the thermal annealing temperature affected the crystallinity of the Al:ZnO films. X-ray diffraction (XRD) analysis showed that thin films were preferentially orientated along the c-axis plane. The preferred orientation along (0 0 2) plane becomes more pronounced as the thermal annealing being increased. The film thickness ranges between 180 and 690 nm. In our experiments, the most optimum condition of Al:ZnO annealing temperature was both 500 oC.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2283
Author(s):  
Amar Kamal Mohamedkhair ◽  
Abbas Saeed Hakeem ◽  
Qasem Ahmed Drmosh ◽  
Abdul Samad Mohammed ◽  
Mirza Murtuza Ali Baig ◽  
...  

Transparent and amorphous yttrium (Y)/Sialon thin films were successfully fabricated using pulsed laser deposition (PLD). The thin films were fabricated in three steps. First, Y/Sialon target was synthesized using spark plasma sintering technique at 1500 °C in an inert atmosphere. Second, the surface of the fabricated target was cleaned by grinding and polishing to remove any contamination, such as graphite and characterized. Finally, thin films were grown using PLD in an inert atmosphere at various substrate temperatures (RT to 500 °C). While the X-ray diffractometer (XRD) analysis revealed that the Y/Sialon target has β phase, the XRD of the fabricated films showed no diffraction peaks and thus confirming the amorphous nature of fabricated thin films. XRD analysis displayed that the fabricated thin films were amorphous while the transparency, measured by UV-vis spectroscopy, of the films, decreased with increasing substrate temperature, which was attributed to a change in film thickness with deposition temperature. X-ray photoelectron spectroscopy (XPS) results suggested that the synthesized Y/Sialon thin films are nearly homogenous and contained all target’s elements. A scratch test revealed that both 300 and 500 °C coatings possess the tough and robust nature of the film, which can resist much harsh loads and shocks. These results pave the way to fabricate different Sialon doped materials for numerous applications.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 885 ◽  
Author(s):  
Nguyen Thi To Loan ◽  
Nguyen Thi Hien Lan ◽  
Nguyen Thi Thuy Hang ◽  
Nguyen Quang Hai ◽  
Duong Thi Tu Anh ◽  
...  

In this research, structural, magnetic properties and photocatalytic activity of cobalt ferrite spinel (CoFe2O4) nanoparticles were studied. The samples were characterized by X-ray powder diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscopy (SEM), transmission electronic microscopy (TEM), Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FTIR), and UV-visible diffused reflectance spectroscopy (DRS) analysis. The XRD analysis revealed the formation of the single-phase CoFe2O4 with a cubic structure that is annealed at 500–700 °C in 3 h. The optical band gap energy for CoFe2O4 was determined to be in the range of 1.57–2.03 eV. The effect on the magnetic properties of cobalt ferrites was analyzed by using a vibrating sample magnetometer (VSM). The particle size and the saturation magnetization of cobalt ferrite nanoparticles increased with increasing annealing temperature. The photocatalytic activity of CoFe2O4 nanoparticles was investigated by using rhodamine B dye under visible light. The decomposition of rhodamine B reached 90.6% after 270 min lighting with the presence of H2O2 and CF500 sample.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 676 ◽  
Author(s):  
Georgiana Bulai ◽  
Oana Pompilian ◽  
Silviu Gurlui ◽  
Petr Nemec ◽  
Virginie Nazabal ◽  
...  

Ge-Sb-Te thin films were obtained by ns-, ps-, and fs-pulsed laser deposition (PLD) in various experimental conditions. The thickness of the samples was influenced by the Nd-YAG laser wavelength, fluence, target-to-substrate distance, and deposition time. The topography and chemical analysis results showed that the films deposited by ns-PLD revealed droplets on the surface together with a decreased Te concentration and Sb over-stoichiometry. Thin films with improved surface roughness and chemical compositions close to nominal values were deposited by ps- and fs-PLD. The X-ray diffraction and Raman spectroscopy results showed that the samples obtained with ns pulses were partially crystallized while the lower fluences used in ps- and fs-PLD led to amorphous depositions. The optical parameters of the ns-PLD samples were correlated to their structural properties.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
R. Mariappan ◽  
V. Ponnuswamy ◽  
P. Jayamurugan ◽  
R. N. Jayaprakash ◽  
R. Suresh

thin films have been deposited on glass substrates at substrate temperature 400°C through nebulizer spray pyrolysis technique. X-ray diffraction (XRD) analysis shows that the films structure is changed from hexagonal to tetragonal. The high-resolution scanning electron microscopy (HRSEM) studies reveal that the substrate is well covered with a number of grains indicating compact morphology with an average grain size 50–79 nm. Energy dispersive X-ray analysis (EDAX) reveals the average ratio of the atomic percentage. Optical transmittance study shows the presence of direct transition. Band gap energy decreases from 3.33 to 2.87 eV with respect to the rise of Sn content. The electrical resistivity of the thin films was found to be 106 Ω-m.


Sign in / Sign up

Export Citation Format

Share Document