scholarly journals Experimental Study Regarding the Influence of Welding Parameters on the Mechanical Behaviorof High Density Polyethylene Pipes

2021 ◽  
Vol 57 (4) ◽  
pp. 209-215
Author(s):  
Ibrahim Ramadan ◽  
Maria Tanase

The experimental study conducted for this article was made using the butt fusion welding procedure for high density polyethylene (HDPE) pipes. PE100 (SDR 17, PN 10) water pipes were used, as for the experimental study parts of around 200 to 300 mm were welded, using different welding parameters. The influence of the welding parameters on the pipes resistance was analyzed, through visual examination and experimental tests such as tensile, bending and pressure tests.

2014 ◽  
Vol 122 ◽  
pp. 22-30 ◽  
Author(s):  
Lucien Laiarinandrasana ◽  
Clémence Devilliers ◽  
Jean Marc Lucatelli ◽  
Emmanuelle Gaudichet-Maurin ◽  
Jean Michel Brossard

2015 ◽  
Vol 19 ◽  
pp. 155-162 ◽  
Author(s):  
Amin Abedini ◽  
Payam Rahimlou ◽  
Taghi Asiabi ◽  
Samrand Rash Ahmadi ◽  
Taher Azdast

2021 ◽  
Vol 9 (1) ◽  
pp. 248-256
Author(s):  
J.A. dos Santos ◽  
R.C. Tucunduva ◽  
J.R.M. D’Almeida

Polymer pipes are being widely used by many industrial segments. Although not affected by corrosion, the mechanical performance of these pipes can be reduced due to exposure to temperature, UV radiation and by contact with various fluids. Depending on the deterioration process, embrittlement or plasticization may occur, and the service life of the pipe can be severely reduced. In this work, the combined action of temperature and water upon the mechanical performance of polyamide 12 and high-density polyethylene pipes is evaluated. Destructive and non-destructive techniques were used and the performance of both materials was compared. Both polymers were platicized by the effect of water. However, for high density polyethylene the effect of temperature was more relevant than for polyamide. This behavior was attributed to the dependence of the free volume with the markedly different glass transition temperature of the polymers and the temperatures of testing.


2021 ◽  
Vol 58 (1) ◽  
pp. 85-98
Author(s):  
Eugen Avrigean

This aim of this paper is to perform a study on the way the material of the fittings that can be welded through eletrofusion on polyethylene pipes withstands. The process is observed by means of the thermal and fast cameras. Also we intend to analyze the way the assembly consisting of the polyethylene fitting and pipe behaves during welding. The stresses caused by the welding process are observed, as well as the concurrent welding of the tapping tee and the branch saddle tee.


Author(s):  
Caleb J. Frederick

Today, commercial nuclear power plants are installing High-Density Polyethylene (HDPE) in non-safety-related and safety-related applications. While this material has numerous advantages over the carbon steel pipes that historically have been used for the same applications, developing a way to accurately inspect for joint integrity in HDPE has become increasingly important to utilities and the U.S. Nuclear Regulatory Commission (USNRC). This paper will investigate the ability to quantify the levels of detection of flaws and detrimental conditions using ultrasonic phased array, in butt-fusion joints throughout the full spectrum of applicable HDPE pipe diameters and wall-thicknesses. Perhaps the most concerning joint condition is that of “Cold Fusion”. A cold-fused joint is created when molecules along the fusion line do not fully entangle or co-crystallize. Once the fusion process is complete, during visual examination, there is the appearance of a good quality joint. However, the joint does not have the strength needed, as the required co-crystallization along the pipe faces has not occurred. Performing a visual examination of the bead, as required by the current revision of ASME Code Case N-755, does not provide adequate guarantee of joint integrity. Therefore, volumetric examination is of special concern to the USNRC to safeguard against this type of detrimental condition. Factors addressed will include pipe diameter, wall-thickness, fusing temperature, interfacial pressure, dwell (open/close) time, and destructive verification of ultrasonic data.


2016 ◽  
Vol 860 ◽  
pp. 49-52 ◽  
Author(s):  
Munir Tasdemir ◽  
Mustafa Kemal Bilici ◽  
Mehmet Kurt

In the present study, we attempt to use powder of glass spheres filler and reinforce material in HDPE to produce composite structure and then evaluate its mechanical properties to study the effect of welding parameters and filler content on mechanical properties of HDPE. The effect of welding parameters (tool rotational speed, the plunge depth and the dwell time) on friction stir spot welding properties of high density polyethylene/glass spheres (hollow) polymer composites sheets was studied.


Author(s):  
Jicheng Gao ◽  
Chao Li ◽  
Yifu Shen

The aim of this work is to fabricate the high-density polyethylene–copper composites by submerged friction stir processing at different traverse speeds. The scanning electron microscopy is used to analyze the distribution of microstructure and particles. The experimental results indicated that the macrostructure morphology, microstructure and tensile strength vary depending on the traverse speed. Compared with the pure high-density polyethylene, Cu-filled polymer composites showed lower tensile strength and higher microhardness. The maximal values of the tensile strength and microhardness were achieved at traverse speeds of 30 and 15 mm/min, respectively. The thermal properties of Cu-filled high-density polyethylene composites were studied by differential scanning calorimetry. The crystalline content of the composites was decreased due to the addition of copper. From the experimental tests, it can be concluded that submerged fiction stir processing has a great potential for producing polymer–metal composites.


Sign in / Sign up

Export Citation Format

Share Document