Martensite-austenite and Ferromagnetic-paramagnetic Transformations in Ni2-xAxMn1-yByGa1-zCz (A, B=Co; C=Al) Heusler Alloys

2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Mihail-Liviu Craus ◽  
Viorel Dobrea ◽  
Mihai Lozovan

Ni2MnGa Heusler alloy is known as a potential smart material. At room temperature it has a L21 type structure, undergoing a martensitic transition (TM) at low temperatures. Some authors have classified Ni-Mn-Ga Heusler alloys on the values of martensitic transformation and Curie temperatures: first group formed by alloys with TM below room temperature and TC, second group with TM around room temperature and third group with TM]TC. The partial substitution of Ni with Mn leads to an increase of the transition temperature and a decrease of the Curie temperature. The Ni2-xMn1+xGa alloys have a complex tetragonal structure at room temperature. The substitution of Ga with Al can change the crystalline and magnetic structure of Heusler alloys: Ni2MnAl is antiferromagnetic for a B2 (CsCl type, with Mn and Al randomly distributed in the center of the cube) structure and ferromagnetic for a L21 (BiF3 type with Mn and Al ordered distributed in the cube center) structure. We intend to put in evidence a dependence between the applied magnetic field on a side, and the transition temperature, on other side, for the Ni2-xAxMn1-yByGa1-zCz (A, B=Co; C=Al) Heusler alloys.

2008 ◽  
Vol 52 ◽  
pp. 189-197 ◽  
Author(s):  
Xavier Moya ◽  
Lluís Mañosa ◽  
Antoni Planes ◽  
Seda Aksoy ◽  
Mehmet Acet ◽  
...  

In this paper, we discuss the possibility of inducing a martensitic transition by means of an applied magnetic field or hydrostatic pressure in Ni-Mn based Heusler shape memory alloys. We report on the shift of the martensitic transition temperatures with applied magnetic field and applied pressure and we show that it is possible to induce the structural transformation in a Ni50Mn34In16 alloy by means of both external fields due to: (i) the low value of the entropy change and (ii) the large change of magnetization and volume, which occur at the martensitic transition.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 226
Author(s):  
Kousuke Nakamura ◽  
Atsushi Miyake ◽  
Xiao Xu ◽  
Toshihiro Omori ◽  
Masashi Tokunaga ◽  
...  

This study investigates the crystal structure, martensitic transformation behavior, magnetic properties, and magnetic-field-induced reverse martensitic transformation of Co64V15(Si21–xAlx) alloys. It was found that by increasing the Al composition, the microstructure changes from the martensite phase to the parent phase. The crystal structures of the martensite and parent phases were determined as D022 and L21, respectively. Thermoanalysis and thermomagnetization measurements were used to determine the martensitic transformation and Curie temperatures. Both the ferromagnetic state of the parent phase and that of the martensite phase were observed. With the increasing Al contents, the martensitic transformation temperatures decrease, whereas the Curie temperatures of both the martensite and parent phases increase. The spontaneous magnetization and its composition dependence were also determined. The magnetic-field-induced reverse martensitic transformation of a Co64V15Si7Al14 alloy under pulsed high magnetic fields was observed. Moreover, using the results of the DSC measurements and the pulsed high magnetization measurements, the temperature dependence of the transformation entropy change of the Co-V-Si-Al alloys was estimated.


2021 ◽  
Vol 26 (2) ◽  
pp. 47
Author(s):  
Julien Eustache ◽  
Antony Plait ◽  
Frédéric Dubas ◽  
Raynal Glises

Compared to conventional vapor-compression refrigeration systems, magnetic refrigeration is a promising and potential alternative technology. The magnetocaloric effect (MCE) is used to produce heat and cold sources through a magnetocaloric material (MCM). The material is submitted to a magnetic field with active magnetic regenerative refrigeration (AMRR) cycles. Initially, this effect was widely used for cryogenic applications to achieve very low temperatures. However, this technology must be improved to replace vapor-compression devices operating around room temperature. Therefore, over the last 30 years, a lot of studies have been done to obtain more efficient devices. Thus, the modeling is a crucial step to perform a preliminary study and optimization. In this paper, after a large introduction on MCE research, a state-of-the-art of multi-physics modeling on the AMRR cycle modeling is made. To end this paper, a suggestion of innovative and advanced modeling solutions to study magnetocaloric regenerator is described.


2011 ◽  
Vol 687 ◽  
pp. 500-504
Author(s):  
S. X. Xue ◽  
S.S. Feng ◽  
P. Y. Cai ◽  
Q T Li ◽  
H. B. Wang

Ni54Mn21-xFexGa25(x=0,1,3,5,7,9)polycrystalline alloys were prepared by the technique of directional solidification and the effect of substituting Fe for Mn on the martensitic transformation and mechanical properties of the alloys was analyzed. It was found that the Curie temperature increased with increasing substitution while the martensitic transformation temperature decreased. The Fe-doped Ni54Mn21Ga25 alloys exhibit excellent magnetic properties at room temperature; the typical Ni54Mn20Fe1Ga25 alloy shows a large magnetic-induced-strain of -1040 ppm at a magnetic field of 4000 Oe.


Author(s):  
I. Zolotarevskii

Purpose of work. To ascertain the causes of the abnormally large displacement of the martensitic point in steels and iron alloys in strong pulsed magnetic fields at low temperatures. Research methods. Generalization of experimental and theoretical investigations of the strong magnetic field influence on the martensitic transformation in steels and iron alloys, taking into account the magnetic state of austenite. The obtained results. The distributions of the martensitic point displacement ΔMS from the content of the main component - iron and the temperature of the martensitic γ → α- transformation beginning (martensitic point MS) in different experiments are obtained. It is shown that the obtained temperature dependence ΔMS(MS) in a strong magnetic field at low temperatures decomposes into two components, one of which correlates with the generalized Clapeyron-Clausius equations, and the other is opposite to it. In addition, it was found that steels and alloys with intense γ → α- transformation in a magnetic field contain at least 72.5% iron (wt), which at low temperatures in the fcc structure is antiferromagnetic. Scientific novelty. The anomalous temperature dependence of the distribution ΔMS(MS) in a strong magnetic field is explained on the basis of quantum representations of the magnetic interaction of atoms in the Fe-Ni system. This effect is associated with a number of other invar effects, in particular, with an abnormally large spontaneous and forced magnetostriction, a strong dependence of the resulting exchange integral on the interatomic distance. The point of view according to which in these alloys in a magnetic field γ → α- transformation occurs by the type of “magnetic first kind phase transformation” is substantiated. It is assumed that the nucleation of the martensitic phase in a magnetic field occurs in (at) local regions of γ- phase with disoriented atomic magnetic moments (with high compression and increased forced magnetostriction). Practical value. The information obtained in this work provides grounds for explaining the kinetic features of the transformation of austenite into martensite in steels and iron alloys.


2009 ◽  
Vol 80 (10) ◽  
Author(s):  
J. M. Barandiarán ◽  
V. A. Chernenko ◽  
P. Lázpita ◽  
J. Gutiérrez ◽  
J. Feuchtwanger

2012 ◽  
Vol 535-537 ◽  
pp. 950-953
Author(s):  
Li Na Bai ◽  
Gui Xing Zheng ◽  
Zhi Jian Duan ◽  
Jian Jun Zhang

The influences of Gd concentration on martensitic transformation and magnetic properties of NiMnIn alloys were investigated by differential scanning calorimetry (DSC) , vibrating sample magnetometry (VSM), X-ray diffraction (XRD) and etc. It is Observed through the experiment: the addition of Gd enhances martensite transition temperature;X-ray diffraction analysis of experimental alloys is revealed that to the mixture is martensite and austenite at room temperature; content of Gd is not proportional to the improvement of magnetic property.


2012 ◽  
Vol 100 (17) ◽  
pp. 172410 ◽  
Author(s):  
H. C. Xuan ◽  
L. J. Shen ◽  
T. Tang ◽  
Q. Q. Cao ◽  
D. H. Wang ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 853
Author(s):  
Rim Ameur ◽  
Mahmoud Chemingui ◽  
Tarek Bachaga ◽  
Lluisa Escoda ◽  
Mohamed Khitouni ◽  
...  

The structure and thermal behavior are key factors that influence the functional response of Ni–Mn–Sn alloys. The present study reports the production as well as the structure and thermal analysis of melt-spun (solidification rate: 40 ms−1) Ni50 Mn50−xSnx (x = 10, 11, 12 and 13 at.%) alloys. X-ray diffraction measurements were performed at room temperature. The austenite state has an L21 structure, whereas the structure of the martensite is 7M or 10M (depending on the Sn/Mn percentage). Furthermore, the structural martensitic transformation was detected by differential scanning calorimetry (DSC). As expected, upon increasing the Sn content, the characteristic temperatures also increase. The same tendency is detected in the thermodynamic parameters (entropy and enthalpy). The e/a control allows the development production of alloys with a transformation close to room temperature.


2010 ◽  
Vol 168-169 ◽  
pp. 165-168
Author(s):  
Vasiliy D. Buchelnikov ◽  
Mikhail Drobosyuk ◽  
E.A. Smyshlyaev ◽  
O.O. Pavlukhina ◽  
A.V. Andreevskikh ◽  
...  

The magnetocaloric effect (MCE) in theNi2+xMn1-xGa (x = 0.33, 0.36, 0.39), Ni50Mn25In25, Ni54Mn21Ga18In7, Ni53.5Mn21.5Ga16In9, Ni45Co5Mn36.5In13.5 Heusler alloys and in the La0.7BayCa0.3-yMnO3 (y = 0.12, 0.24, 0.3) manganites at the Curie points have been measured by the direct method. For the magnetic field change H = 2 T, the maximal adiabatic temperature change Tad in the Ni2+xMn1-xGa alloys is larger than 0.6 K. For the Ni50Mn25In25 alloy the maximal value of Tad = 1.51 K (for the same magnetic field change H = 2 T) is observed at the magnetic phase transition temperature.


Sign in / Sign up

Export Citation Format

Share Document