Estimation of the Combustion Temperature Profile in a Romanian Oil Field

2018 ◽  
Vol 69 (10) ◽  
pp. 2669-2676
Author(s):  
Gheorghe Branoiu ◽  
Tudora Cristescu ◽  
Iulian Nistor

Developing and producing of the heavy crude oil involved significant economic and technological challenges. The oil industry ability to prospect and capitalize the huge world heavy oil resources both economically and environmentally friendly will be crucial in helping meet future energy needs. Thermal oil recovery is one of the three types of techniques belonging to Enhanced Oil Recovery. It is applied for increasing the cumulative of crude oil that can be produced in an oil field. One of the oldest thermal oil recovery is in-situ combustion or fireflooding applied for the first time about 100 years ago. Despite in-situ combustion has not found widespread acceptance among operators like other thermal processes (such as steam injection), analysis of the successful projects indicates that the process is applicable to a wide range of oil reservoirs, especially to heavy crude oils. An important monitoring parameter of thermal oil recovery process is represented by thermal regime especially in heavy oil fields in which a high-temperature regime must be occur as the in-situ combustion to be successful. In the paper the authors are using thermal analysis (thermogravimetric and thermodifferential analysis) for investigation of the thermal regime involved in the production process of an oil reservoir by in-situ combustion.

2011 ◽  
Vol 347-353 ◽  
pp. 3219-3222
Author(s):  
Xi Shun Zhang ◽  
Xiao Dong Wu ◽  
Shu Qin Ma

In-situ combustion (fire flooding) is one of important methods to improve heavy oil recovery ratio, utilizing the reservoir itself heavy component burning as dynamic displacement of crude oil, improving the crude oil character, flooding efficiency is high, applicability is extensive, and other recover techniques can not match. But the technical support is difficult and broad, and is the key in restricting the effect of in-situ combustion, especially for the effectiveness of development. With the increase of fire flooding development, flowing wells turns to artificial lifting wells, the gas production increases deeply, and the lifting technology faces a lot of new problems. Aiming at the problems of combustion in-situ, the relevant technologies were researched, then some methods and measures suiting to heavy oil fire flooding technology were proposed. And it provided reference for researching of deep heavy oil fire flooding lifting technology in the future.


2021 ◽  
Vol 343 ◽  
pp. 09009
Author(s):  
Gheorghe Branoiu ◽  
Florinel Dinu ◽  
Maria Stoicescu ◽  
Iuliana Ghetiu ◽  
Doru Stoianovici

Thermal oil recovery is a special technique belonging to Enhanced Oil Recovery (EOR) methods and includes steam flooding, cyclic steam stimulation, and in-situ combustion (fire flooding) applied especially in the heavy oil reservoirs. Starting 1970 in-situ combustion (ISC) process has been successfully applied continuously in the Suplacu de Barcau oil field, currently this one representing the most important reservoir operated by ISC in the world. Suplacu de Barcau field is a shallow clastic Pliocene, heavy oil reservoir, located in the North-Western Romania and geologically belonging to Eastern Pannonian Basin. The ISC process are operated using a linear combustion front propagated downstructure. The maximum oil production was recorded in 1985 when the total air injection rate has reached maximum values. Cyclic steam stimulation has been continuously applied as support for the ISC process and it had a significant contribution in the oil production rates. Nowadays the oil recovery factor it’s over 55 percent but significant potential has left. In the paper are presented the important moments in the life-time production of the oil field, such as production history, monitoring of the combustion process, technical challenges and their solving solutions, and scientific achievements revealed by many studies performed on the impact of the ISC process in the oil reservoir.


2009 ◽  
Vol 12 (04) ◽  
pp. 508-517 ◽  
Author(s):  
Alexandre Lapene ◽  
Louis Castanier ◽  
Gerald Debenest ◽  
Michel Yves Quintard ◽  
Arjan Matheus Kamp ◽  
...  

Summary In-Situ Combustion. In-situ combustion (ISC) is an enhanced oil-recovery method. Enhanced oil recovery is broadly described as a group of techniques used to extract crude oil from the subsurface by the injection of substances not originally present in the reservoir with or without the introduction of extraneous energy (Lake 1996). During ISC, a combustion front is propagated through the reservoir by injected air. The heat generated results in higher temperatures leading to a reduction in oil viscosity and an increase of oil mobility. There are two types of ISC processes, dry and wet combustion. In the dry-combustion process, a large part of the heat generated is left unused downstream of the combustion front in the burned-out region. During the wet-injection process, water is co-injected with the air to recover some of the heat remaining behind the combustion zone. ISC is a very complex process. From a physical point of view, it is a problem coupling transport in porous media, chemistry, and thermodynamics. It has been studied for several decades, and the technique has been applied in the field since the 1950s. The complexity was not well understood earlier by ISC operators. This resulted in a high rate of project failures in the 1960s, and contributed to the misconception that ISC is a problem-prone process with low probability of success. However, ISC is an attractive oil-recovery process and capable of recovering a high percentage of oil-in-place, if the process is designed correctly and implemented in the right type of reservoir (Sarathi 1999). This paper investigates the effect of water on the reaction kinetics of a heavy oil by way of ramped temperature oxidation under various conditions. Reactions. Earlier studies about reaction kinetic were conducted by Bousaid and Ramey (1968), Weijdema (1968), Dabbous and Fulton (1974), and Thomas et al. (1979). In these experiments, temperature of a sample of crude oil and solid matrix was increased over time or kept constant. The produced gas was analyzed to determine the concentrations of outlet gases, such as carbon dioxide, carbon monoxide, and oxygen. This kind of studies shows two types of oxidation reactions, the Low-Temperature Oxidation (LTO) and the High-Temperature Oxidation (HTO) (Burger and Sahuquet 1973; Fassihi et al. 1984a; Mamora et al. 1993). In 1984, Fassihi et al. (1984b) presented an analytical method to obtain kinetics parameters. His method requires several assumptions.


2021 ◽  
Author(s):  
Alexey V. Vakhin ◽  
Irek I. Mukhamatdinov ◽  
Firdavs A. Aliev ◽  
Dmitriy F. Feoktistov ◽  
Sergey A. Sitnov ◽  
...  

Abstract A nickel-based catalyst precursor has been synthesized for in-situ upgrading of heavy crude oil that is capable of increasing the efficiency of steam stimulation techniques. The precursor activation occurs due to the decomposition of nickel tallate under hydrothermal conditions. The aim of this study is to analyze the efficiency of in-situ catalytic upgrading of heavy oil from laboratory scale experiments to the field-scale implementation in Boca de Jaruco reservoir. The proposed catalytic composition for in-reservoir chemical transformation of heavy oil and natural bitumen is composed of oil-soluble nickel compound and organic hydrogen donor solvent. The nickel-based catalytic composition in laboratory-scale hydrothermal conditions at 300°С and 90 bars demonstrated a high performance; the content of asphaltenes was reduced from 22% to 7 wt.%. The viscosity of crude oil was also reduced by three times. The technology for industrial-scale production of catalyst precursor was designed and the first pilot batch with a mass of 12 ton was achieved. A «Cyclic steam stimulation» technology was modified in order to deliver the catalytic composition to the pay zones of Boca de Jaruco reservoir (Cuba). The active forms of catalyst precursors are nanodispersed mixed oxides and sulfides of nickel. The pilot test of catalyst injection was carried out in bituminous carbonate formation M, in Boca de Jaruco reservoir (Cuba). The application of catalytic composition provided increase in cumulative oil production and incremental oil recovery in contrast to the previous cycle (without catalyst) is 170% up to date (the effect is in progress). After injection of catalysts, more than 200 samples from production well were analyzed in laboratory. Based on the physical and chemical properties of investigated samples and considering the excellent oil recovery coefficient it is decided to expand the industrial application of catalysts in the given reservoir. The project is scheduled on the fourth quarter of 2021.


2021 ◽  
pp. 1-13
Author(s):  
Wang Xiaoyan ◽  
Zhao Jian ◽  
Yin Qingguo ◽  
Cao Bao ◽  
Zhang Yang ◽  
...  

Summary Achieving effective results using conventional thermal recovery technology is challenging in the deep undisturbed reservoir with extra-heavy oil in the LKQ oil field. Therefore, in this study, a novel approach based on in-situ combustion huff-and-puff technology is proposed. Through physical and numerical simulations of the reservoir, the oil recovery mechanism and key injection and production parameters of early-stage ultraheavy oil were investigated, and a series of key engineering supporting technologies were developed that were confirmed to be feasible via a pilot test. The results revealed that the ultraheavy oil in the LKQ oil field could achieve oxidation combustion under a high ignition temperature of greater than 450°C, where in-situ cracking and upgrading could occur, leading to greatly decreased viscosity of ultraheavy oil and significantly improved mobility. Moreover, it could achieve higher extra-heavy-oil production combined with the energy supplement of flue gas injection. The reasonable cycles of in-situ combustion huff and puff were five cycles, with the first cycle of gas injection of 300 000 m3 and the gas injection volume per cycle increasing in turn. It was predicted that the incremental oil production of a single well would be 500 t in one cycle. In addition, the supporting technologies were developed, such as a coiled-tubing electric ignition system, an integrated temperature and pressure monitoring system in coiled tubing, anticorrosion cementing and completion technology with high-temperature and high-pressure thermal recovery, and anticorrosion injection-production integrated lifting technology. The proposed method was applied to a pilot test in the YS3 well in the LKQ oil field. The high-pressure ignition was achieved in the 2200-m-deep well using the coiled-tubing electric igniter. The maximum temperature tolerance of the integrated monitoring system in coiled tubing reached up to 1200°C, which provided the functions of distributed temperature and multipoint pressure measurement in the entire wellbore. The combination of 13Cr-P110 casing and titanium alloy tubing effectively reduced the high-temperature and high-pressure oxygen corrosion of the wellbore. The successful field test of the comprehensive supporting engineering technologies presents a new approach for effective production in deep extra-heavy-oil reservoirs.


2021 ◽  
pp. 1-13
Author(s):  
Melek Deniz Paker ◽  
Murat Cinar

Abstract A significant portion of world oil reserves reside in naturally fractured reservoirs and a considerable amount of these resources includes heavy oil and bitumen. Thermal enhanced oil recovery methods (EOR) are mostly applied in heavy oil reservoirs to improve oil recovery. In situ combustion (/SC) is one of the thermal EOR methods that could be applicable in a variety of reservoirs. Unlike steam, heat is generated in situ due to the injection of air or oxygen enriched air into a reservoir. Energy is provided by multi-step reactions between oxygen and the fuel at particular temperatures underground. This method upgrades the oil in situ while the heaviest fraction of the oil is burned during the process. The application of /SC in fractured reservoirs is challenging since the injected air would flow through the fracture and a small portion of oil in the/near fracture would react with the injected air. Only a few researchers have studied /SC in fractured or high permeability contrast systems experimentally. For in situ combustion to be applied in fractured systems in an efficient way, the underlying mechanism needs to be understood. In this study, the major focus is permeability variation that is the most prominent feature of fractured systems. The effect of orientation and width of the region with higher permeability on the sustainability of front propagation are studied. The contrast in permeability was experimentally simulated with sand of different particle size. These higher permeability regions are analogous to fractures within a naturally fractured rock. Several /SC tests with sand-pack were carried out to obtain a better understanding of the effect of horizontal vertical, and combined (both vertical and horizontal) orientation of the high permeability region with respect to airflow to investigate the conditions that are required for a self-sustained front propagation and to understand the fundamental behavior. Within the experimental conditions of the study, the test results showed that combustion front propagated faster in the higher permeability region. In addition, horizontal orientation almost had no effect on the sustainability of the front; however, it affected oxygen consumption, temperature, and velocity of the front. On the contrary, the vertical orientation of the higher permeability region had a profound effect on the sustainability of the combustion front. The combustion behavior was poorer for the tests with vertical orientation, yet the produced oil AP/ gravity was higher. Based on the experimental results a mechanism has been proposed to explain the behavior of combustion front in systems with high permeability contrast.


2013 ◽  
Author(s):  
Andrew Priestley ◽  
Jorge Alejandro Ruiz ◽  
Paul F Naccache ◽  
Guenther Glatz ◽  
Virgil Crecana

Fuel ◽  
2021 ◽  
Vol 285 ◽  
pp. 119216
Author(s):  
Seyedsaeed Mehrabi-Kalajahi ◽  
Mikhail A. Varfolomeev ◽  
Chengdong Yuan ◽  
Almaz L. Zinnatullin ◽  
Nikolay O. Rodionov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document