scholarly journals Silica-Alginate Beads for Intestinal Ketoprofen Delivery

2019 ◽  
Vol 69 (12) ◽  
pp. 3416-3422
Author(s):  
Marilena Petrescu ◽  
Raul Augustin Mitran ◽  
Cristian Matei ◽  
Marius Radulescu ◽  
Daniela Berger

Herein, studies on ketoprofen delivery systems based on silica-alginate beads developed for the drug intestinal release for reducing its side effects were reported. The influence of surface properties, pore size and geometry of mesoporous silica carriers on the ketoprofen release kinetics was studied by using pristine and 3-aminopropyl functionalized MCM 41 (Mobile Composition of Matter) and MCF (mesocellular foam silica) materials. The ketoprofen loaded mesoporous silica coated with alginate is a pH-triggered system able to slow down the drug release rate in the targeted environment.

2013 ◽  
Vol 645 ◽  
pp. 125-128
Author(s):  
Wei Zeng

Five ordered mesoporous materials, SBA-1, MCM-48, SBA-7, MCM-41 and SBA-15, were prepared and tested as mesophase drug delivery systems with an anti-inflammatory drug, ibuprofen. The results of these mesostructures on in vitro ibuprofen delivery indicated that the mesoporous materials with cage-like structure, SBA-1 and SBA-7, had unfavorable load and release properties. MCM-48 also showed fast release rate due to its opening channel. However, the hexagonal mesostructure in MCM-41 and SAB-15 was advantageous for extending drug release rate although a little difference existed between them. Compared with commercial ibuprofen capsule, the release system based on MCM-41 materials displayed the drug efficacy in a longer time.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1039
Author(s):  
Tamás Kiss ◽  
Gábor Katona ◽  
László Mérai ◽  
László Janovák ◽  
Ágota Deák ◽  
...  

Background: The drug release of antiparkinsonian drugs is an important issue during the formulation process because proper release kinetics can help to reduce the off periods of Parkinson’s disease. A 2-factor, 3-level (32) full-factorial design was conducted to evaluate statistically the influence of the hydrophobicity of mesoporous silica on drug release. Methods: Hydrophobization was evaluated by different methods, such as contact angle measurement, infrared spectroscopy and charge titration. After loading the drug (levodopa methyl ester hydrochloride, melevodopa hydrochloride, LDME) into the mesopores, drug content, particle size, specific surface area and homogeneity of the products were also analyzed. The amorphous state of LDME was verified by X-ray diffractometry and differential scanning calorimetry. Results: Drug release was characterized by a model-independent method using the so-called initial release rate parameter, as detailed in the article. The adaptability of this method was verified; the model fitted closely to the actual release results according to the similarity factor, independently of the release kinetics. Conclusions: The API was successfully loaded into the silica, resulting in a reduced surface area. The release studies indicated that the release rate significantly decreased (p < 0.05) with increasing hydrophobicity. The products with controlled release can reduce the off period frequency.


Inorganics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 42 ◽  
Author(s):  
Katharina Braun ◽  
Christina M. Stürzel ◽  
Frank Kirchhoff ◽  
Mika Lindén

It has been shown that the optimized VIR-576 derivative of the natural HIV-1 entry inhibitor targeting the viral gp41 fusion peptide is safe and effective in infected individuals. However, high doses of this peptide were required, and stability, as well as delivery, must be improved for clinical application. Here, we examined the loading and release of VIR-576 into/from mesoporous silica nanoparticles (MSNs) in vitro. We found that a moderately high peptide loading of 11.5 wt % could be achieved by adsorption from PBS buffer (pH 7.2), i.e., under mild, fully peptide-compatible conditions. The release rate of peptide into the same buffer was slow and the equilibrium concentration as indicated by the adsorption isotherm could not be reached even within 50 h at the particle concentrations studied. However, a faster release was observed at lower particle concentrations, indicating that partial particle dissolution had a positive influence on peptide release. To determine the antiviral activity of VIR-576-loaded MSNs, TZM-bl indicator cells were exposed to HIV-1 and the infection rates were followed as a function of time and VIR-576 concentration. The inhibitory activity observed for VIR-576 released from the MSNs was virtually identical to that of free VIR-576 at the 48 h time point, indicating that (a) VIR-576 was released in an active form from the MSNs, and (b) the release rate in the presence of serum proteins was clearly higher than that observed under protein-free conditions. These observations are discussed based on competitive peptide/protein adsorption, as well as potential influences of serum proteins on the dissolution-reprecipitation of silica under conditions where the total silica concentration is above the saturation level for dissolved silica. Our results highlight the need for studying drug release kinetics in the presence of serum proteins, in order to allow for a better extrapolation of in vitro data to in vivo conditions. Furthermore, due to the high peptide loadings that can be achieved using MSNs as carriers, such a formulation appears promising for local release applications. For systemic administration, however, peptides with a higher potency would be needed, due to their high molar masses limiting the drug loading in terms of moles per gram carrier.


2021 ◽  
pp. 30-33
Author(s):  
Jayashree B. Gaja ◽  
Jesindha Beyatricks ◽  
Monisha R

An oral modied release dosage forms have always been more effective therapeutic alternative to conventional dosage forms. The present invention is directed to a modied release pharmaceutical composition of indomethacin by using hydrophilic release retardant polymers like HPMC K15M, Na CMC alone or in combination. Matrix embedded prolong release tablet formulations of Indomethacin were prepared by wet granulation technique and evaluated for tablet properties such as the thickness, hardness, friability, weight variation, drug content, drug release kinetics and in vitro release studies. The inuence of drug polymer ratio on drug release was studied by dissolution test. The FTIR studies showed no interactions among drug and polymers. The tablets formulation (F7 and F8) containing combined polymers of HPMC K15M and Na CMC resulted in slower drug release rate form the matrix. So, it can be concluded that Indomethacin prolong release tablets using HPMC K15M and Na CMC as the retardant has successfully extended the release of indomethacin from its formulations. The mixing of two cellulose polymers, ionic and non-ionic, for the formulation of hydrophilic matrices, resulted in a valuable decrease in drug release rate. All the formulations showed KorsmeyerPeppa’s model as a best t.


2017 ◽  
Vol 23 (3) ◽  
pp. 467-480 ◽  
Author(s):  
Satyanarayan Pattnaik ◽  
Kamla Pathak

Background: Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Description: Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. Conclusion: This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed.


RSC Advances ◽  
2015 ◽  
Vol 5 (32) ◽  
pp. 25164-25170 ◽  
Author(s):  
Bo Zhang ◽  
Teng Zhang ◽  
Quanxi Wang ◽  
Tianrui Ren

A controlled release system was prepared, it based on UF modified PCC cells in which TEB are loaded into cells. It can control the drug release rate, depress the initial “burst effect”, and was efficacious in controlling wheat powdery mildew.


Biomaterials ◽  
2001 ◽  
Vol 22 (21) ◽  
pp. 2857-2865 ◽  
Author(s):  
Giacomo Fontana ◽  
Mariano Licciardi ◽  
Silvana Mansueto ◽  
Domenico Schillaci ◽  
Gaetano Giammona

Sign in / Sign up

Export Citation Format

Share Document