Experimental Research at the Industrial Level for the Productionof Ferrous Agglomerates from Iron Ores and Ferrous Waste

2020 ◽  
Vol 70 (12) ◽  
pp. 4275-4282

One of the basic issues to be solved during this period is to simultaneously neutralize and efficiently make use of the resulting waste from the production processes. The objective of the experimental research was to make a special ferrous agglomerate from a mixture of iron ores and ferrous waste and to test its use in the blast furnace. Research has shown a normal functioning of the blast furnace with this type of special agglomerate, obtaining a white pig iron with standardized structure and composition. The introduction of ferrous waste into the agglomeration is a long-term recycling solution with very low costs and with beneficial influences on the environment through the use of dusty waste. Keywords: blast furnace, ferrous sinter, ferrous waste, recycling, waste recovery

2019 ◽  
Vol 70 (11) ◽  
pp. 3835-3842
Author(s):  
Mihai Dumitru Tudor ◽  
Mircea Hritac ◽  
Nicolae Constantin ◽  
Mihai Butu ◽  
Valeriu Rucai ◽  
...  

Direct use of iron ores in blast furnaces, without prior sintering leads to a reduction in production costs and energy consumption [1,2]. Fine-grained iron ores and iron oxides from ferrous wastes can be used together with coal dust and limestone in mixed injection technology through the furnace tuyeres. In this paper are presented the results of experimental laboratory investigations for establishing the physic-chemical characteristics of fine materials (iron ore, limestone, pulverized coal) susceptible to be used for mixed injection in blast furnace. [1,4]. The results of the experimental research have shown that all the raw materials analyzed can be used for mixt injection in blast furnace.


Author(s):  
A.L. Chaika ◽  
B.V. Kornilov ◽  
A.A. Moskalina ◽  
V.V Lebed ◽  
M.G. Dzhigota ◽  
...  

In 2019, according to the technological assignment of the Iron and Steel Institute (ISI), the reconstruction of the blast furnace (BF) No. 3 of PJSC «AZOVSTAL IRON & STEEL WORKS» was carried out for the long-term energy-efficient production of pig iron with using pulverized coal (PCI) up to 180 kg/t with a change in the profile according to the technological task of ISI. The design of the BF No. 3 profile corresponds to the best world solutions for furnaces efficiently working with pulverized coal, and the furnace was equipped with five mathematical models of ISI («Horn», «Mine», «Heat losses», «Loading», «Slag»). Specialists of ISI developed recommendations and carried out technological support for the operation of BF No.3, which made it possible to increase the removal of pig iron from the design 2.1 t/m3 to 2.27 t/m3 and achieved the best indicators in the blast furnace workshop in terms of coke and equivalent fuel consumption by increasing the productivity of the burden system, using a rational burden loading matrix, using a rational pressure drop in the furnace, which allows the maximum use of the power of the blower machine, forcing the furnace with technical oxygen and other measures. Using the heat power model of I.D. Semikin was made a comparative analysis of the best for six months indicators of thermal performance and technical and economic indicators of BF №3 of PJSC «AZOVSTAL IRON & STEEL WORKS», with a volume of 1800 m3 before (work with natural gas) and after major repairs (work with pulverized coal and with natural gas). Using the exergy method of analysis based on the results of calculating heat and power balances, a comparative analysis of changes in the energy efficiency and environmental indicators of BF No. 3 before and after its major repairs was carried out. It shown the expediency of integrated mastering of operating modes and modernization of the blast furnace for long-term and energy-efficient operation with pulverized coal. It disclosed the mechanism for improving the technical and economic indicators of work after major repairs by changing the heat and power conditions of the blast furnace. Its shown Improvement of exergy efficiency factor and environmental performance of BF No. 3 after major repairs.


2019 ◽  
Vol 70 (11) ◽  
pp. 3835-3842
Author(s):  
Mihai Dumitru Tudor ◽  
Mircea Hritac ◽  
Nicolae Constantin ◽  
Mihai Butu ◽  
Valeriu Rucai ◽  
...  

Direct use of iron ores in blast furnaces, without prior sintering leads to a reduction in production costs and energy consumption [1,2]. Fine-grained iron ores and iron oxides from ferrous wastes can be used together with coal dust and limestone in mixed injection technology through the furnace tuyeres. In this paper are presented the results of experimental laboratory investigations for establishing the physic-chemical characteristics of fine materials (iron ore, limestone, pulverized coal) susceptible to be used for mixed injection in blast furnace. [1,4]. The results of the experimental research have shown that all the raw materials analyzed can be used for mixt injection in blast furnace.


2014 ◽  
Vol 798-799 ◽  
pp. 487-491 ◽  
Author(s):  
Mariana Miranda Abreu ◽  
Fernando Vernilli ◽  
Veronica Scarpini Candido ◽  
Sergio Neves Monteiro ◽  
Carlos Maurício Fontes Vieira

The blast furnace is one the main systems used in steelmaking plants operating with iron ores. In addition to the production of pig iron and slag, the blast furnace operation also generates a considerable amount of wastes such as dust usually collected in the upwards flowing gas. The dust collecting stage, without separation procedures, produces a sludge, which cannot be recycled inside the plant due to the concentration of undesirable earth alkaline metals as well as zinc. A possible solution for this so-called global blast furnace sludge (GFS) is its incorporation, outside the plant, into clayey ceramic products processed at high temperatures. Therefore, the objective of the present work was to investigate the effect of GFS incorporation, in amounts of 5 and 10 wt%, into kaolinitic clay ceramics fired at 750, 950 and 1050oC. Initially, the GFS was characterized and, after processing, incorporated into ceramics that were then tested for the water absorption, linear shrinkage and flexural strength. It was found significant improvements in the properties for GFS incorporated ceramics fired at 1050oC.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 768 ◽  
Author(s):  
Clara Navarrete ◽  
Irene Hjorth Jacobsen ◽  
José Luis Martínez ◽  
Alessandra Procentese

Despite all the progresses made by metabolic engineering, still only a few biotechnological processes are running at an industrial level. In order to boost the biotechnological sector, integration strategies as well as long-term views are needed. The aim of the present review is to identify the main drawbacks in biotechnological processes, and to propose possible solutions to overcome the issues in question. Novel cell factories and bioreactor design are discussed as possible solutions. In particular, the following microorganisms: Yarrowia lipolytica, Trichosporon oleaginosus, Ustilago cynodontis, Debaryomyces hansenii along with sequential bioreactor configurations are presented as possible cell factories and bioreactor design solutions, respectively.


2021 ◽  
Vol 13 (4) ◽  
pp. 1732
Author(s):  
Seok-ho Jung ◽  
Mee-hye Lee ◽  
Seong-ho Lee ◽  
Ji Whan Ahn

In September 2015, the United Nations included ‘sustainable consumption and production’ as part of its 12th goal of sustainable development. The EU announced its Circular Economic Package in December 2015 to move from the existing linear economic structure to the net environmental system. Recycling of household waste has become more significant as a circular economic policy has been implemented to reflow waste into the economy through recycling worldwide. In this study, Korea’s household waste generation for 20 years from 1998 to 2017 was analyzed through statistical techniques. Waste generation tended to increase in the order of plastics and cans, and papers tended to decrease. The amount of bottle wastes has been on the decline after increasing. A questionnaire survey on recycling priority was conducted on 261 people, including participants in the EARTH-2019 recycling experience hall, using the analytic hierarchy process (AHP) technique. According to the survey, the recycling priorities of six types of household waste are (first) plastic, (second) cans, viny, scrap metals, (third) paper, and (fourth) bottles. Statistical analysis of mid- to long-term household waste generation and AHP-based household waste recycling priority survey results can be used as basic data, such as environmental analysis in Korea’s recycling-related policies and research.


2011 ◽  
Vol 391-392 ◽  
pp. 60-64
Author(s):  
Fang Yi Long ◽  
Sheng Li Wu ◽  
Juan Zhu ◽  
Yuan Du ◽  
Guo Liang Zhang

The bonding intensity of four kinds of ores from Brazil, Australia and South Africa is researched in this study, and the influence factors are analyzed. The results show that, the ores of different types have apparently differences in bonding intensity, ores from Brazil and South Africa have high bonding intensity, while ores from Australia have low bonding intensity; The foundation of generation of effective liquid is adequate liquid phase fluidity and the lower porosity of core ore; The ratio of porosity of core ore and the index of liquid phase fluidity has negative correlation with the bonding intensity.


Sign in / Sign up

Export Citation Format

Share Document