scholarly journals A Compact Fractal-Shaped O-Ring Monopole Antenna for Modern Broadband Wireless Applications

2021 ◽  
Vol 12 ◽  
pp. 93-99
Author(s):  
Chang-Ju Wu ◽  
I-Fong Chen ◽  
Chia-Mei Peng ◽  
Wen-Yi Tsai ◽  
Jwo-Shiun Sun

In this letter, the design of a compact planar Fractal-shaped O-ring monopole antenna based on the Sierpinski carpet concept is studied and proposed for modern broadband wireless applications. The planar fractal-shaped O-ring monopole antenna is on the basis of Sierpinski category construction and then modifies the state of the plane inward with a radius of 27mm over the two iterations. The antenna structure is low profile and easy to be fabricated, and it has performed the simulation and measurement with the result VSWR ≤ 2 that can achieve a wide impedance bandwidth 636% from the frequency band 1.57GHz ~ 10GHz. The geometric scale factor of the Sierpinski fractal is according to the same scale element that defines the geometrical self-similarity. In our experiments, the results show that use of fractal-shaped O-ring into monopole antenna structure can effectively improve input impedance matching, and obtain a larger bandwidth and better radiation pattern, while also having predictable multi-band characteristics.

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3809
Author(s):  
Mohammed M. Bait-Suwailam ◽  
Isidoro I. Labiano ◽  
Akram Alomainy

In this paper, impedance matching enhancement of a grounded wearable low-profile loop antenna is investigated using a high-impedance surface (HIS) structure. The wearable loop antenna along with the HIS structure is maintained low-profile, making it a suitable candidate for healthcare applications. The paper starts with investigating, both numerically and experimentally, the effects of several textile parameters on the performance of the wearable loop antenna. The application of impedance enhancement of wearable grounded loop antenna with HIS structure is then demonstrated. Numerical full-wave simulations are presented and validated with measured results. Unlike the grounded wearable loop antenna alone with its degraded performance, the wearable loop antenna with HIS structure showed better matching performance improvement at the 2.45 GHz-band. The computed overall far-field properties of the wearable loop antenna with HIS structure shows good performance, with a maximum gain of 6.19 dBi. The effects of bending the wearable loop antenna structure with and without HIS structure as well as when in close proximity to a modeled human arm are also investigated, where good performance was achieved for the case of the wearable antenna with the HIS structure.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Shiqiang Fu ◽  
Yuan Cao ◽  
Yue Zhou ◽  
Shaojun Fang

A new low-profile variable pitch angle cylindrical helical antenna employing a copper strip as impedance transformer is proposed in this paper. Under the circumstance of a limited antenna height, the circular polarization performance of the antenna has been enhanced by changing the pitch angle and the input impedance matching has been improved by adjusting the copper strip match stub. The design method of the proposed antenna is given. The optimal antenna structure for INMARSAT application has been fabricated and measured. The measured results show that in the whole maritime satellite communication work band the VSWR is less than 1.2, its antenna gain is higher than 9 dBi, and the axial ratio is lower than 2.5 dB. The experimental results have a good agreement with the simulations. The proposed antenna is compact and easy tuning. It provides a promising antenna element for maritime satellite communication applications.


Author(s):  
Shweta Rani ◽  
Sushil Kakkar

This paper focuses on the design and development of modified Koch fractal antenna. Compared to traditional Koch curve antenna, the presented antenna possesses a greater number of frequency bands and better impedance matching. Furthermore, the bacterial foraging optimization (BFO) approach is implemented to enhance the impedance bandwidth. The developed technique has been verified by employing various numerical simulations. The design parameters generated from the optimization procedure have been utilized to manufacture the antenna and the respective experimental and simulated results compared. The measured results show that the designed antenna exhibits multi and wideband behavior, covering WLAN, WIMAX, and various other wireless applications.


2011 ◽  
Vol 324 ◽  
pp. 434-436
Author(s):  
R. Abi Saad ◽  
Zeina Melhem ◽  
Chadi Nader ◽  
Youssef Zaatar ◽  
Doumit Zaouk

in this paper, we propose a new multi-band patch antenna structure for embedded RFID (Radio Frequency Identification) readers and wireless communications. The proposed antenna is a dual band microstrip patch antenna using U-slot geometry. The operating frequencies of the proposed antenna are chosen as 2.4 and 0.9 (GHz), obtained by optimizing the physical dimensions of the U-slot. Several parameters have been investigated using Ansoft Designer software. The antenna is fed through a quarter wavelength transformer for impedance matching. An additional layer of alumina is added above the surface of the conductors to increase the performance of the antenna.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Sarthak Singhal ◽  
Amit Kumar Singh

AbstractA CPW-fed 8-shaped monopole antenna for ultra wideband applications is presented. It consists of a 8-shaped monopole and two quarter elliptical coplanar waveguide ground planes. An impedance bandwidth from 5.4 GHz to 23.83 GHz is achieved. The radiation patterns are observed to be omnidirectional and bidirectional in E-and H-plane respectively at lower resonances. At higher frequencies, the radiation patterns are found to be nearly omnidirectional in both planes. The group delay variation is also observed to be constant in the operating frequency range. A good agreement is found between the simulation and experimental results. The designed antenna structure has miniaturized dimensions and wider bandwidth as compared to other already reported monopole structures.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Tao Zhou ◽  
Yazi Cao ◽  
Zhiqun Cheng ◽  
Martine Le Berre ◽  
Francis Calmon

A novel high-efficiency compact planar antenna at 433 MHz with minimized size and low-cost and easy to integrate into the ISM wireless applications is designed, fabricated, and measured. Capacitive strips that are formed by cutting inter-digital slots and the meander lines on both sides are introduced to greatly reduce the antenna size yet maintain the high efficiency. The proposed antenna has a simple planar structure and occupies a small area (i.e., 45 × 30 mm2). This novel electrically small antenna can be operated well without any lumped elements for impedance matching. Details of the antenna design and experimental results are presented and discussed.


2015 ◽  
Vol 16 (9) ◽  
pp. 851-861 ◽  
Author(s):  
Tsitoha Andriamiharivolamena ◽  
Pierre Lemaître-Auger ◽  
Smail Tedjini ◽  
Franck Tirard

2018 ◽  
Vol 7 (3.4) ◽  
pp. 80
Author(s):  
Saritha Vanka ◽  
Tanmayi Seedrala ◽  
Jhansi Rani Areti

This work presents a circularly polarized, CPW-Fed multi band operating monopole antenna. The monopole antenna consists of three parasitic elements, along with a stub at ground for impedance matching. The parasitic elements so far accumulated have shown their excellence in increasing the impedance bandwidth over the 6-18GHz band. The antenna was carved on FR-4 epoxy substrate which result a copper clad laminated structure. The CPW-Fed monopole antenna exhibits excellent circular polarization levels in the frequency region 6-18GHz. The simulation resulted a Return loss of less than -10dB, with good axial ratio less than -3dB over entire band of interest. The simulation was carried out through HFSS microwave studio. The antenna measured values are in good correspondence to the simulated values. 


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Chien-Jen Wang ◽  
Dai-Heng Hsieh

A small dual-band monopole antenna with coplanar waveguide (CPW) feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4%) at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3%) at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.


Sign in / Sign up

Export Citation Format

Share Document