scholarly journals Analytical Design of Multi-loop Fractional IMC-PID-Filter Controllers for MIMO System Using Equivalent NIOPDT Models

In this paper, a multiloop fractional IMC-PID-filter controller design is proposed for 2x2 multivariable systems (two-input two-output (TITO) system). The MIMO system is decomposed by an inverted decoupler into independent loops (SISO systems) and they are approximated to equivalent new fractional order models known as non integer order plus time delay (NIOPTD). The fractional property of the suggested controller is imposed by choosing the Bode’s ideal closed loop transfer function as the reference model for each loop. The design method is based on the internal model control (IMC) paradigm. Finally, an illustrative example of MIMO process is provided and a comparative study is conducted out to demonstrate the advantages of the proposed method where the simulation results show the superior performance obtained by a multi-loop fractional IMC-PID-filter controllers in comparison with fractional PI/PID controllers based on simplified decoupling smith predictor (Fractional-SDSP and Classical-SDSP) structure as well as classical decentralized PID controllers using root locus method.

Author(s):  
Tassadit Chekari ◽  
Rachid Mansouri ◽  
Maamar Bettayeb

This paper is aimed to propose a multiloop control scheme for fractional order multi-input multi-output (FO-MIMO) systems. It is an extension of the FO-multiloop controller design method developed for integer order multivariable systems to FO-MIMO ones. The interactions among the control loops are considered as disturbances and a two degrees-of-freedom (2DOF) paradigm is used to deal with the process outputs performance and the interactions reduction effect, separately. The proposed controller design method is simple, in relation with the desired closed-loop specifications and a tuning parameter. It presents an interest in controlling complex MIMO systems since fractional order models (FO-models) represent some real processes better than integer order ones and high order systems can be approximated by FO-models. Two examples are considered and compared with other existing methods to evaluate the proposed controller.


2012 ◽  
Vol 197 ◽  
pp. 311-315 ◽  
Author(s):  
Qi Bing Jin ◽  
Rong Li

A V-norm Decoupling internal model control (IMC) method with filters based on inverted decoupling for multivariate stable object is proposed in this paper. The actual industrial process is very difficult to obtain an accurate model, which makes the control effect not satisfactory. To solve this problem, the V-norm decoupling controller is designed on the basis of the inverted decoupling, and a filter is added in front of the controller to reduce coupling and increase robustness. Compared with traditional multivariable controller designed method, the method of designing the internal model controller in this paper is simpler and less calculation. Finally, the Wood/Berry model is taken as the simulated object to verify the controller design method is reasonable. The results show that V-norm decoupling internal model controller method is effective and feasible, even the system model is mismatched.


2012 ◽  
Vol 236-237 ◽  
pp. 356-359 ◽  
Author(s):  
Ling Quan ◽  
Hai Long Zhang

Multivariable system with time delay and coupling widely exist in industrial which may destroy the normal work of control system. An unconventional internal model controller design method will be introduced in this paper. The closed loop system can be decouple by calculate the inverse of transfer function matrix and the optimal diagonal decomposition matrix. Finally, this method was applied in a multivariable system with different time delays, the simulation results can show the effectiveness of this method.


2020 ◽  
Vol 29 (2) ◽  
pp. 219-229
Author(s):  
Arun RAMAVEERAPATHIRAN ◽  
Muniraj RATHINAM ◽  
Willjuice Iruthayarajan MARIA SILUVAIRAJ

2013 ◽  
Vol 648 ◽  
pp. 305-310
Author(s):  
Ji Liang Shang ◽  
Da Hai Ren

In the industrial process of common multivariable time delay input/output system, a multivariable decoupling internal model controller design method is put forward based on the internal model control structure, the method for the design of internal model controller has the function of decoupling and controller. The advantage has the ability to achieve approximate or complete decoupling in nominal system output response, the method is used on the multivariable strong coupling of the boiler combustion control system to design and simulation study, the simulation results prove the effectiveness of the method. And in the process model and process mismatch showed strong robustness and anti jamming ability.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 949
Author(s):  
Keita Hara ◽  
Masaki Inoue

In this paper, we address the data-driven modeling of a nonlinear dynamical system while incorporating a priori information. The nonlinear system is described using the Koopman operator, which is a linear operator defined on a lifted infinite-dimensional state-space. Assuming that the L2 gain of the system is known, the data-driven finite-dimensional approximation of the operator while preserving information about the gain, namely L2 gain-preserving data-driven modeling, is formulated. Then, its computationally efficient solution method is presented. An application of the modeling method to feedback controller design is also presented. Aiming for robust stabilization using data-driven control under a poor training dataset, we address the following two modeling problems: (1) Forward modeling: the data-driven modeling is applied to the operating data of a plant system to derive the plant model; (2) Backward modeling: L2 gain-preserving data-driven modeling is applied to the same data to derive an inverse model of the plant system. Then, a feedback controller composed of the plant and inverse models is created based on internal model control, and it robustly stabilizes the plant system. A design demonstration of the data-driven controller is provided using a numerical experiment.


2020 ◽  
Vol 6 (5) ◽  
pp. 0585-0593
Author(s):  
Bruna Couto Molinar Henrique ◽  
Leonardo Couto Molinar Henrique ◽  
Humberto Molinar Henrique

This work deals with implementation of an experimental flowrate control unit using free and low-cost hardware and software. The open-source software Processing was used to develop the source codes and user graphical interface and the open-source electronic prototyping platform Arduino was used to acquire data from an experimental unit. Work presents descriptions of the experimental setup, the real-time PID controllers used and theoretical/conceptual issues of Arduino. PID controllers based on internal model control, minimization of the integral of time-weighted absolute error, Ziegler-Nichols, and others were tuned for setpoint and load changes and real-time runs were carried out in order to make real-time use of  control theory learned in academy. Results showed the developed platform proved to be suitable for use in experimental setups allowing users compare their ideas and expectations with the experimental evidence in a real and low-cost fashion. In addition, the instrumentation is simple to configure with acceptable level noise and particularly useful for control/automation learning with educational purposes.


Author(s):  
D Garabandić ◽  
T Petrović

A linear feedback controller for pulse-width-modulated d.c./d.c. regulator is designed using a frequency domain optimization method based on internal-model-control theory. This method aims to produce suboptimal low-order controllers which are ‘robust’, in the sense that the closed-loop system is guaranteed to meet stability objectives in the presence of model uncertainty. The small-signal model of a d.c./d.c. converter is used for the controller design. The model uncertainty description derived here is based on experiments and non-linear modelling. The result of the synthesis is a family of controllers, and each member of this family satisfies the robust control objectives. All controllers have a multi-loop structure including two feedback loops and one feedforward loop. A detailed design of the controller, including experimental results, is presented.


Sign in / Sign up

Export Citation Format

Share Document