scholarly journals Inhibition of mouse hepatocyte apoptosis via anti-Fas ribozyme

2004 ◽  
Vol 10 (17) ◽  
pp. 2567 ◽  
Author(s):  
Min Zhang
2003 ◽  
Vol 35 (4) ◽  
pp. 351-367 ◽  
Author(s):  
Matthew Z Dieter ◽  
Sarah L Freshwater ◽  
Marian L Miller ◽  
Howard G Shertzer ◽  
Timothy P Dalton ◽  
...  

Author(s):  
Susan C Hasmall ◽  
Neil H James ◽  
Neil Macdonald ◽  
Frank J Gonzalez ◽  
Jeffrey M Peters ◽  
...  

2012 ◽  
Vol 32 (9) ◽  
pp. 1342-1353 ◽  
Author(s):  
Erawan Borkham-Kamphorst ◽  
Sebastian Huss ◽  
Eddy Leur ◽  
Ute Haas ◽  
Ralf Weiskirchen

2021 ◽  
Vol 22 (15) ◽  
pp. 8253
Author(s):  
Jung-Yeon Kim ◽  
Yongmin Choi ◽  
Jaechan Leem ◽  
Jeong Eun Song

Cholestatic liver diseases can progress to end-stage liver disease and reduce patients’ quality of life. Although their underlying mechanisms are still incompletely elucidated, oxidative stress is considered to be a key contributor to these diseases. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that displays antioxidant action. It has been found that this enzyme plays a protective role against various inflammatory diseases. However, the role of HO-1 in cholestatic liver diseases has not yet been investigated. Here, we examined whether pharmacological induction of HO-1 by cobalt protoporphyrin (CoPP) ameliorates cholestatic liver injury. To this end, a murine model of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet feeding was used. Administration of CoPP ameliorated liver damage and cholestasis with HO-1 upregulation in DDC diet-fed mice. Induction of HO-1 by CoPP suppressed the DDC diet-induced oxidative stress and hepatocyte apoptosis. In addition, CoPP attenuated cytokine production and inflammatory cell infiltration. Furthermore, deposition of the extracellular matrix and expression of fibrosis-related genes after DDC feeding were also decreased by CoPP. HO-1 induction decreased the number of myofibroblasts and inhibited the transforming growth factor-β pathway. Altogether, these data suggest that the pharmacological induction of HO-1 ameliorates cholestatic liver disease by suppressing oxidative stress, hepatocyte apoptosis, and inflammation.


2021 ◽  
Vol 10 (12) ◽  
pp. 2718
Author(s):  
Omid Madadi-Sanjani ◽  
Gunnar Bohlen ◽  
Fabian Wehrmann ◽  
Julia Andruszkow ◽  
Karim Khelif ◽  
...  

In biliary atresia (BA), apoptosis is part of the pathomechanism, which results in progressive liver fibrosis. There is increasing evidence suggesting that apoptotic liver injury can be non-invasively detected by measuring the caspase activity in the serum. The purpose of this study was to investigate whether serological detection of caspase activation mirrors apoptotic liver injury in the infective murine BA-model and represents a suitable biomarker for BA in humans. Analysis showed increased caspase-3 activity and apoptosis in the livers of cholestatic BALB/c mice, which correlated significantly with caspase activation in the serum. We then investigated caspase activation and apoptosis in liver tissues and sera from 26 BA patients, 23 age-matched healthy and 11 cholestatic newborns, due to other hepatopathies. Compared to healthy individuals, increased caspase activation in the liver samples of BA patients was present. Moreover, caspase-3 activity was significantly higher in sera from BA infants compared to patients with other cholestatic diseases (sensitivity 85%, specificity 91%). In conclusion, caspase activation and hepatocyte apoptosis play an important role in experimental and human BA. We demonstrated that serological detection of caspase activation represents a reliable non-invasive biomarker for monitoring disease activity in neonatal cholestatic liver diseases including BA.


2008 ◽  
Vol 295 (1) ◽  
pp. G45-G53 ◽  
Author(s):  
Bin Hu ◽  
Lisa M. Colletti

Stem cell factor (SCF) and its receptor c-kit are important in hematopoiesis and cellular proliferation. c-kit has also been identified as a cell surface marker for progenitor cells. We have previously shown that there is a large reservoir of hepatic SCF, and this molecule plays a significant role in liver regeneration after 70% hepatectomy. In the current study, we further examined the expression of SCF and c-kit in acetaminophen (APAP)-induced liver injury in C57BL/6J mice or SCF-deficient sl-sld mice and their appropriate wild-type controls. Following APAP-induced liver injury, c-kit mRNA expression increased, with peak levels detected 48 h postinjury. Hepatic SCF mRNA levels after APAP injury were also increased, with peak levels seen 16 h post-APAP. The mortality rate in SCF-deficient mice treated with APAP was significantly higher than that of wild-type mice; furthermore, administration of exogenous SCF significantly reduced the mortality of APAP-treated wild-type mice. Bromodeoxyuridine incorporation experiments showed that SCF significantly increased hepatocyte proliferation at 48 and 72 h in APAP-treated mice. SCF inhibited APAP-induced hepatocyte apoptosis and increased Bcl-2 and Bcl-xL expression, suggesting that this decrease in hepatocyte apoptosis is mediated through Bcl-2 and Bcl-xL. In summary, SCF and c-kit expression was increased after APAP-induced liver injury. Administration of exogenous SCF reduces mortality in APAP-treated mice, increases hepatocyte proliferation, and prevents hepatocyte apoptosis induced by APAP, suggesting that these molecules are important in the liver's recovery from these injuries.


2001 ◽  
Vol 42 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Jin Wang ◽  
Jennifer Boedeker ◽  
Helen H. Hobbs ◽  
Ann L. White

Sign in / Sign up

Export Citation Format

Share Document