scholarly journals Suppression of reflexive saccades in younger and older adults: Age comparisons on an antisaccade task

1999 ◽  
Vol 27 (4) ◽  
pp. 584-591 ◽  
Author(s):  
Karin M. Butler ◽  
Rose T. Zacks ◽  
John M. Henderson
1991 ◽  
Vol 1 (2) ◽  
pp. 171-180
Author(s):  
Junko Fukushima ◽  
Kikuro Fukushima ◽  
Nobuyuki Morita ◽  
Itaru Yamashita

Some schizophrenic patients have been known to have frontal cortical dysfunction. In view of the evidence that voluntary purposive eye movements and rapid head movements involve areas of the frontal cortex, investigations of saccade performance have been carried out on schizophrenics in various laboratories. We have compared performance of schizophrenic patients in tasks involving inhibition of reflexive saccades (no-saccade) and initiation of saccades without target (memory-saccade) with performance in. the antisaccade task. These measures were also compared with results of eye-head coordination tasks. Schizophrenics showed more errors and significantly longer latencies, with lower peak velocities at large amplitudes, in both the anti saccade task and the memory-saccade task. Performance with coordinated eye-head movement was basically similar, except for significantly longer latencies of head movement. These results suggest that schizophrenics may have a disturbance in initiating and executing purposive saccades without targets, and that dysfunction of the frontal cortex may contribute to this disturbance.


2002 ◽  
Vol 14 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Jason P. Mitchell ◽  
C. Neil Macrae ◽  
Iain D. Gilchrist

Conscious behavioral intentions can frequently fail under conditions of attentional depletion. In attempting to trace the cognitive origin of this effect, we hypothesized that failures of action control—specifically, oculomotor movement—can result from the imposition of fronto-executive load. To evaluate this prediction, participants performed an antisaccade task while simultaneously completing a working-memory task that is known to make variable demands on prefrontal processes (n-back task, see Jonides et al., 1997). The results of two experiments are reported. As expected, antisaccade error rates were increased in accordance with the fronto-executive demands of the n-back task (Experiment 1). In addition, the debilitating effects of working-memory load were restricted to the inhibitory component of the antisaccade task (Experiment 2). These findings corroborate the view that working memory operations play a critical role in the suppression of prepotent behavioral responses.


2018 ◽  
Vol 120 (6) ◽  
pp. 3001-3016 ◽  
Author(s):  
Eduardo A. Aponte ◽  
Dominic G. Tschan ◽  
Klaas E. Stephan ◽  
Jakob Heinzle

In the antisaccade task participants are required to saccade in the opposite direction of a peripheral visual cue (PVC). This paradigm is often used to investigate inhibition of reflexive responses as well as voluntary response generation. However, it is not clear to what extent different versions of this task probe the same underlying processes. Here, we explored with the Stochastic Early Reaction, Inhibition, and late Action (SERIA) model how the delay between task cue and PVC affects reaction time (RT) and error rate (ER) when pro- and antisaccade trials are randomly interleaved. Specifically, we contrasted a condition in which the task cue was presented before the PVC with a condition in which the PVC served also as task cue. Summary statistics indicate that ERs and RTs are reduced and contextual effects largely removed when the task is signaled before the PVC appears. The SERIA model accounts for RT and ER in both conditions and better so than other candidate models. Modeling demonstrates that voluntary pro- and antisaccades are frequent in both conditions. Moreover, early task cue presentation results in better control of reflexive saccades, leading to fewer fast antisaccade errors and more rapid correct prosaccades. Finally, high-latency errors are shown to be prevalent in both conditions. In summary, SERIA provides an explanation for the differences in the delayed and nondelayed antisaccade task.NEW & NOTEWORTHY In this article, we use a computational model to study the mixed antisaccade task. We contrast two conditions in which the task cue is presented either before or concurrently with the saccadic target. Modeling provides a highly accurate account of participants’ behavior and demonstrates that a significant number of prosaccades are voluntary actions. Moreover, we provide a detailed quantitative analysis of the types of error that occur in pro- and antisaccade trials.


2011 ◽  
Vol 23 (6) ◽  
pp. 1368-1378 ◽  
Author(s):  
Patricia A. Reuter-Lorenz ◽  
Troy M. Herter ◽  
Daniel Guitton

Individuals who have undergone hemispherectomy for treatment of intractable epilepsy offer a rare and valuable opportunity to examine the ability of a single cortical hemisphere to control oculomotor performance. We used peripheral auditory events to trigger saccades, thereby circumventing dense postsurgical hemianopia. In an antisaccade task, patients generated numerous unintended short-latency saccades toward contralesional auditory events, indicating pronounced limitations in the ability of a single hemicortex to exert normal inhibitory control over ipsilateral (i.e., contralesional) reflexive saccade generation. Despite reflexive errors, patients retained an ability to generate correct antisaccades in both directions. The prosaccade task revealed numerous contralesional express saccades, a robust contralesional gap effect, but the absence of both effects for ipsilesional saccades. These results indicate limits to the saccadic control capabilities following hemispherectomy: A single hemicortex can mediate antisaccades in both directions, but plasticity does not extend fully to the bilateral inhibition of reflexive saccades. We posit that these effects are due to altered control dynamics that reduce the responsivity of the superior colliculus on the intact side and facilitate the release of an auditory-evoked ocular grasp reflex into the blind hemifield that the intact hemicortex has difficulty suppressing.


PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61566 ◽  
Author(s):  
Jingxin Wang ◽  
Jing Tian ◽  
Rong Wang ◽  
Valerie Benson

2020 ◽  
Vol 14 ◽  
Author(s):  
Grace Lin ◽  
Raghda Al Ani ◽  
Ewa Niechwiej-Szwedo

A robust association between reduced visual acuity and cognitive function in older adults has been revealed in large population studies. The aim of this work was to assess the relation between stereoacuity, a key aspect of binocular vision, and inhibitory control, an important component of executive functions. Inhibition was tested using the antisaccade task in older adults with normal or reduced stereopsis (study 1), and in young adults with transiently reduced stereopsis (study 2). Older adults with reduced stereopsis made significantly more errors on the antisaccade task in comparison to those with normal stereopsis. Specifically, there was a significant correlation between stereoacuity and antisaccade errors (r = 0.27, p = 0.019). In contrast, there were no significant differences in antisaccade errors between the normal and reduced stereopsis conditions in the young group. Altogether, results suggest that the association between poorer stereopsis and lower inhibitory control in older adults might arise due to central nervous system impairment that affects the processing of binocular disparity and antisaccades. These results add to a growing body of literature, which highlights the interdependence of sensory and cognitive decline in older adults.


2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


2019 ◽  
Vol 62 (5) ◽  
pp. 1258-1277 ◽  
Author(s):  
Megan K. MacPherson

PurposeThe aim of this study was to determine the impact of cognitive load imposed by a speech production task on the speech motor performance of healthy older and younger adults. Response inhibition, selective attention, and working memory were the primary cognitive processes of interest.MethodTwelve healthy older and 12 healthy younger adults produced multiple repetitions of 4 sentences containing an embedded Stroop task in 2 cognitive load conditions: congruent and incongruent. The incongruent condition, which required participants to suppress orthographic information to say the font colors in which color words were written, represented an increase in cognitive load relative to the congruent condition in which word text and font color matched. Kinematic measures of articulatory coordination variability and movement duration as well as a behavioral measure of sentence production accuracy were compared between groups and conditions and across 3 sentence segments (pre-, during-, and post-Stroop).ResultsIncreased cognitive load in the incongruent condition was associated with increased articulatory coordination variability and movement duration, compared to the congruent Stroop condition, for both age groups. Overall, the effect of increased cognitive load was greater for older adults than younger adults and was greatest in the portion of the sentence in which cognitive load was manipulated (during-Stroop), followed by the pre-Stroop segment. Sentence production accuracy was reduced for older adults in the incongruent condition.ConclusionsIncreased cognitive load involving response inhibition, selective attention, and working memory processes within a speech production task disrupted both the stability and timing with which speech was produced by both age groups. Older adults' speech motor performance may have been more affected due to age-related changes in cognitive and motoric functions that result in altered motor cognition.


2020 ◽  
Vol 29 (3) ◽  
pp. 391-403
Author(s):  
Dania Rishiq ◽  
Ashley Harkrider ◽  
Cary Springer ◽  
Mark Hedrick

Purpose The main purpose of this study was to evaluate aging effects on the predominantly subcortical (brainstem) encoding of the second-formant frequency transition, an essential acoustic cue for perceiving place of articulation. Method Synthetic consonant–vowel syllables varying in second-formant onset frequency (i.e., /ba/, /da/, and /ga/ stimuli) were used to elicit speech-evoked auditory brainstem responses (speech-ABRs) in 16 young adults ( M age = 21 years) and 11 older adults ( M age = 59 years). Repeated-measures mixed-model analyses of variance were performed on the latencies and amplitudes of the speech-ABR peaks. Fixed factors were phoneme (repeated measures on three levels: /b/ vs. /d/ vs. /g/) and age (two levels: young vs. older). Results Speech-ABR differences were observed between the two groups (young vs. older adults). Specifically, older listeners showed generalized amplitude reductions for onset and major peaks. Significant Phoneme × Group interactions were not observed. Conclusions Results showed aging effects in speech-ABR amplitudes that may reflect diminished subcortical encoding of consonants in older listeners. These aging effects were not phoneme dependent as observed using the statistical methods of this study.


Sign in / Sign up

Export Citation Format

Share Document