Effects of Rotor-Blade Deformation onto Performance of Domestic Wind Turbines

Author(s):  
Carlos Armenta-Deu

Paper is focused on the influence that blade deformations by torsion and bending due to drag, lift, and gravitational effects has on the performance of small wind turbines. A blade model of stiff finite elements connected by rotating junctions is used. Mechanical deformations are simulated by controlled gravity and torsional forces, and their effects are measured through the response of the wind turbine. Tests have been run before and after the deformation process under different wind conditions in a wind tunnel. No centrifugal stiffening and gyroscopic moments are considered due to the low angular speed. Wind speed was controlled to determine the effect of the deformation on the performance of the wind turbine as a function of the wind power. The results have shown that in all cases, the effects of the deformation are negative, and the decrease in power has been calculated depending on wind conditions.

Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 8 ◽  
Author(s):  
Davide Astolfi

Pitch angle control is the most common means of adjusting the torque of wind turbines. The verification of its correct function and the optimization of its control are therefore very important for improving the efficiency of wind kinetic energy conversion. On these grounds, this work is devoted to studying the impact of pitch misalignment on wind turbine power production. A test case wind farm sited onshore, featuring five multi-megawatt wind turbines, was studied. On one wind turbine on the farm, a maximum pitch imbalance between the blades of 4.5 ° was detected; therefore, there was an intervention for recalibration. Operational data were available for assessing production improvement after the intervention. Due to the non-stationary conditions to which wind turbines are subjected, this is generally a non-trivial problem. In this work, a general method was formulated for studying this kind of problem: it is based on the study, before and after the upgrade, of the residuals between the measured power output and a reliable model of the power output itself. A careful formulation of the model is therefore crucial: in this work, an automatic feature selection algorithm based on stepwise multivariate regression was adopted, and it allows identification of the most meaningful input variables for a multivariate linear model whose target is the power of the wind turbine whose pitch has been recalibrated. This method can be useful, in general, for the study of wind turbine power upgrades, which have been recently spreading in the wind energy industry, and for the monitoring of wind turbine performances. For the test case of interest, the power of the recalibrated wind turbine is modeled as a linear function of the active and reactive power of the nearby wind turbines, and it is estimated that, after the intervention, the pitch recalibration provided a 5.5% improvement in the power production below rated power. Wind turbine practitioners, in general, should pay considerable attention to the pitch imbalance, because it increases loads and affects the residue lifetime; in particular, the results of this study indicate that severe pitch misalignment can heavily impact power production.


Author(s):  
Sayem Zafar ◽  
Mohamed Gadalla

A small horizontal axis wind turbine rotor was designed and tested with aerodynamically efficient, economical and easy to manufacture blades. Basic blade aerodynamic analysis was conducted using commercially available software. The blade span was constrained such that the complete wind turbine can be rooftop mountable with the envisioned wind turbine height of around 8 m. The blade was designed without any taper or twist to comply with the low cost and ease of manufacturing requirements. The aerodynamic analysis suggested laminar flow airfoils to be the most efficient airfoils for such use. Using NACA 63-418 airfoil, a rectangular blade geometry was selected with chord length of 0.27[m] and span of 1.52[m]. Glass reinforced plastic was used as the blade material for low cost and favorable strength to weight ratio with a skin thickness of 1[mm]. Because of the resultant velocity changes with respect to the blade span, while the blade is rotating, an optimal installed angle of attack was to be determined. The installed angle of attack was required to produce the highest possible rotation under usual wind speeds while start at relatively low speed. Tests were conducted at multiple wind speeds with blades mounted on free rotating shaft. The turbine was tested for three different installed angles and rotational speeds were recorded. The result showed increase in rotational speed with the increase in blade angle away from the free-stream velocity direction while the start-up speeds were found to be within close range of each other. At the optimal angle was found to be 22° from the plane of rotation. The results seem very promising for a low cost small wind turbine with no twist and taper in the blade. The tests established that non-twisted wind turbine blades, when used for rooftop small wind turbines, can generate useable electrical power for domestic consumption. It also established that, for small wind turbines, non-twisted, non-tapered blades provide an economical yet productive alternative to the existing complex wind turbine blades.


Author(s):  
K. Vafiadis ◽  
H. Fintikakis ◽  
I. Zaproudis ◽  
A. Tourlidakis

In urban areas, it is preferable to use small wind turbines which may be integrated to a building in order to supply the local grid with green energy. The main drawback of using wind turbines in urban areas is that the air flow is affected by the existence of nearby buildings, which in conjunction with the variation of wind speed, wind direction and turbulence may adversely affect wind energy extraction. Moreover, the efficiency of a wind turbine is limited by the Betz limit. One of the methods developed to increase the efficiency of small wind turbines and to overcome the Betz limit is the introduction of a converging – diverging shroud around the turbine. Several researchers have studied the effect of shrouds on Horizontal Axis Wind Turbines, but relatively little research has been carried out on shroud augmented Vertical Axis Wind Turbines. This paper presents the numerical study of a shrouded Vertical Axis Wind Turbine. A wide range of test cases, were examined in order to predict the flow characteristics around the rotor, through the shroud and through the rotor – shroud arrangement using 3D Computational Fluid Dynamics simulations. The power output of the shrouded rotor has been improved by a factor greater than 2.0. The detailed flow analysis results showed that there is a significant improvement in the performance of the wind turbine.


Author(s):  
John F. Hall ◽  
Dongmei Chen

The cost of electrical power produced by small wind turbines impedes the use of this technology, which can otherwise provide power to millions of homes in rural regions worldwide. To encourage their use, small wind turbines must capture wind energy more effectively while avoiding increased equipment costs. A variable ratio gearbox (VRG) can provide this capability to the simple fixed-speed wind turbine through discrete operating speeds. This is the second of a two-part publication that focuses on the control of a VRG-enabled wind turbine. The first part presented a 100 kW fixed speed, wind turbine model, and a method for manipulating the VRG and mechanical brake to achieve full load operation. In this study, an optimal control algorithm is developed to maximize the power production in light of the limited brake pad life. Recorded wind data are used to develop a customized control design that is specific to a given site. Three decision-making modules interact with the wind turbine model developed in Part 1 to create possible VRG gear ratio (GR) combinations. Dynamic programming is applied to select the optimal combination and establish the operating protocol. The technique is performed on 20 different wind profiles. The results suggest an increase in wind energy production of nearly 10%.


2021 ◽  
Vol 1 (1) ◽  
pp. 23-28
Author(s):  
D. Daskalaki ◽  
J. Fantidis ◽  
P. Kogias

The evaluation of a small 3kW wind turbine through the net metering scheme is studied in this article. 14 near to sea locations in Greece examined with the help of the RetScreen expert software. The simulations based on electrical, financial and environmental criteria. Siros with average wind speed of 6.93 m/s is the most attractive area while Iraklion is the least attractive location. According to the results the simulated project is already economically sound and a small wind turbine in the Greek islands will become a progressively an even more financially source of electricity in Greece. Finally yet importantly is the fact that the use of small wind turbines has as a result that significant amount of Greenhouse gases do not reradiate into the topical atmosphere.


2021 ◽  
Vol 19 ◽  
pp. 195-198
Author(s):  
J. Vilà ◽  
◽  
N. Luo ◽  
L. Pacheco ◽  
T. Pujol ◽  
...  

The installed power capacity from small wind turbines would rise in case of having higher efficiency values. The performance of these devices is very sensitive to wind conditions, especially to wind gusts and turbulence. Performance extracted from small-scale wind turbine datasheets show large variations of power output between turbulent and non-turbulent sites and often the installation in intermittent wind sites is discouraged. The use of blades with fixed positions is a clear drawback of small wind turbines. Here, we propose a design of a smart active pitch control to increase the energy generation of micro-wind turbines (< 5 kWp). The design consists of a simple mechanism that allows the rotation of the blades controlled by a low cost peripheral interface controller. The possibility to orientate the blades so as to maximise the power output at all wind conditions will increase the performance of this small wind turbines. The design is robust and economical, which will increase its potential adoptability rate by the end-user.


Solar Energy ◽  
2003 ◽  
Author(s):  
Eduardo Rinco´n Meji´a ◽  
Jesu´s Tovar Salazar ◽  
Jo´zef Wo´jcik Filipek

This paper describes the behavior of a new tail device to yaw smoothly small wind turbine rotors out of the wind during strong wind or gusts. The passive tail device consists of a rigid short tail, an aerodynamic rotating vane, a tail bumper, and a spring. This passive tail device reduces gyroscopic loads, is easy to adjust, can be manufactured in smaller sizes, and is much stronger than conventional vanes used in small wind machines. Besides, the energy collected with it is greater. Field test results indicate that its behavior agrees very well with simulations, and that the regulator can be advantageously utilized, as compared with conventional vanes and other mechanical or electromechanical means, in horizontal-axis wind turbines with diameters of 12 m or smaller. Here the steady-state case (quasi-steady wind velocity is assumed) is analyzed, showing the technical viability of the regulator proposed.


2013 ◽  
Vol 768 ◽  
pp. 119-123
Author(s):  
Sandip A. Kale ◽  
S.N. Sapali

The technology of harnessing wind energy through traditional three-bladed large wind turbines is in mature state. There are many disputes about the performance and availability of power output of the small wind turbines. The small wind turbines need improvement in technology for low speed starting behavior, enhancement in coefficient in performance, assured power output in low wind region. This work consists of development and field test performance of a non-conventional unidirectional co-axial two series rotors micro wind turbine to supply electricity for rural population. The unidirectional co-axial series rotor wind turbine consists of small rotors to replace a big rotor, mounted on a tilted long driveshaft at appropriate distances to face fresh wind, coupled to a direct drive generator. The developed turbine consists of two rotors, placed at suitable interval to avoid the wake effect. This work also includes field test performance and its analysis.


Sign in / Sign up

Export Citation Format

Share Document