scholarly journals Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach

2015 ◽  
Vol 6 ◽  
pp. 529-536 ◽  
Author(s):  
Alireza Kharazmi ◽  
Nastaran Faraji ◽  
Roslina Mat Hussin ◽  
Elias Saion ◽  
W Mahmood Mat Yunus ◽  
...  

This work describes a fast, clean and low-cost approach to synthesize ZnS–PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV–visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Daiqiang Deng ◽  
Guodong Cao

Because of the uniqueness of geological mineralization, tailings obtained from Chenchao Iron Mine have low SiO2 content of only 27.80%. Content of Al2O3 and MgO is 13.31% and CaSO4 is 22.09%. The fineness modulus of the ores is large enough for convenient mineral separation, thus resulting in 16.03% −5 μm particles and 27.76% −10 μm particles in the tailings, respectively. The average particle size is only 69.36 μm; it belongs to the category of very fine tailings. The natural sedimentation of tailings is extremely slow due to the comprehensive effects of their physical and chemical properties. Hence, sedimentation tests using four types of flocculating agents are conducted to accelerate the sedimentation of the tailings of Chenchao Iron Mine. Compared with natural sedimentation, the flocculating sedimentation is considerably quicker. Among the four flocculants, the sedimentation of sample using the special BASF flocculant is the fastest. When the tailings of 1 ton add this flocculant of 20 g, the maximum settling concentration reaches 60.98% after 40 min and its special gravity is 1.577 g/cm3, thus it fulfills future requirements of filling technologies. As the largest iron mine in the mid-southern region of China, Chenchao Iron Mine must turn to filling mining. This study can provide technological support for goaf management and environment-friendly treatment of solid waste in the Yangtze River basin, which plays important roles in ecological protection.


2009 ◽  
Vol 24 (1) ◽  
pp. 227-236 ◽  
Author(s):  
Haijiao Zhang ◽  
Gang Liu ◽  
Xiaojuan Wan ◽  
Huijiao Guo ◽  
Zheng Jiao ◽  
...  

Under γ-irradiation, thiacetamide (TAA) releases S2−in acidic solutions (e.g., pH = 3), and the S2−can react with available Cd2+in soft templates to form CdS nanorods. Single-crystalline CdS nanorods were prepared in this study. The effects of various synthesis parameters on the crystalline type, morphology, average particle size, and photoelectric properties were thoroughly investigated, including the concentrations of reactants, dose of irradiation, and the type and dosage of templates. The structure and selected physical and chemical properties of products were characterized by x-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis), selected area electron diffraction (SAED), transmission electron microscopy (TEM), and photoluminescence (PL) spectrophotometer techniques. Results indicated that the ratio of reactants to templates greatly affected the morphology of CdS nanorods; the types of soft templates also had significant effects on the morphology and crystalline type of the nanorod products.


2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


2019 ◽  
Vol 17 (1) ◽  
pp. 1459-1465
Author(s):  
Xuedong Feng ◽  
Jing Yi ◽  
Peng Luo

AbstractWith the purpose of studying the influence of NO/O2 on the NOx storage activity, a Pt-Ba-Ce/γ-Al2O3 catalyst was synthesized by an acid-aided sol-gel method. The physical and chemical properties of the catalyst were characterized by X-ray diffraction (XRD) and Transmission Electron Microscope (TEM) methods. The results showed that the composition of the catalyst was well-crystallized and the crystalline size of CeO2 (111) was about 5.7 nm. The mechanism of NO and NO2 storage and NOx temperature programmed desorption (NO-TPD) experiments were investigated to evaluate the NOx storage capacity of the catalyst. Pt-Ba-Ce/γ-Al2O3 catalyst presented the supreme NOx storage performance at 350℃, and the maximum value reached to 668.8 μmol / gcat. Compared with O2-free condition, NO oxidation to NO2 by O2 had a beneficial effect on the storage performance of NOx. NO-TPD test results showed that the NOx species stored on the catalyst surface still kept relatively stable even below 350℃.


2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.


1997 ◽  
Vol 496 ◽  
Author(s):  
David J. Derwin ◽  
Kim Kinoshita ◽  
Tri D. Tran ◽  
Peter Zaleski

AbstractSeveral types of carbonaceous materials from Superior Graphite Co. were investigated for lithium ion intercalation. These commercially available cokes, graphitized cokes and graphites have a wide range of physical and chemical properties. The coke materials were investigated in propylene carbonate based electrolytes and the graphitic materials were studied in ethylene carbonate / dimethyl solutions to prevent exfoliation. The reversible capacities of disordered cokes are below 230 mAh / g and those for many highly ordered synthetic (artificial) and natural graphites approached 372 mAh / g (LiC6). The irreversible capacity losses vary between 15 to as much as 200 % of reversible capacities for various types of carbon. Heat treated cokes with the average particle size of 10 microns showed marked improvements in reversible capacity for lithium intercalation. The electrochemical characteristics are correlated with data obtained from scanning electron microscopy (SEM), high resolution transmission electron microscopy (TAM), X - ray diffraction (XRD) and BET surface area analysis. The electrochemical performance, availability, cost and manufacturability of these commercial carbons will be discussed.


2021 ◽  
Vol 6 (1) ◽  
pp. 32-36
Author(s):  
Anh Quoc Le ◽  
Van Phu Dang ◽  
Ngoc Duy Nguyen ◽  
Kim Lan Nguyen Thi ◽  
Kim Lang Vo Thi ◽  
...  

Silver nanoparticles (AgNPs) doped in the zeolite framework (AgNPs/Z) were successfully synthesized by γ-irradiation in ethanol solution of silver ion-zeolite (Ag+/Z) prepared by ion exchange reaction between silver nitrate (AgNO3) and zeolite 4A. The effects of the Ag+ concentration and irradiation dose on the formation of AgNPs/Z were also investigated. AgNPs/Z with the silver content of about 10,000 ppm and the average particle size of AgNPs of about 27 nm was characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM). Firstly, AgNPs/Z was added into PP resins for creation of PP-AgNPs/Z masterbatch (Ag content of ~10.000 ppm) and then PP-AgNPs/Z plastics were preapared by mixing masterbatch with PP resins. The antibacterial activity of the PP-AgNPs/Z plastics was investigated against Gram-negative bacteria Escherichia coli (E. coli). The results showed that PP-AgNPs/Z plastic contained 100 ppm of Ag possessed a high antibacterial property, namely the bactericidal effect was more than 96 % on the platic surface. In conclusion, possessing many advantages such as: vigorously antibacterial effect and good dispersion in plastic matrix, AgNPs/Z is promising to be applied as bactericidal agent for plastic industry.


2012 ◽  
Vol 535-537 ◽  
pp. 31-35
Author(s):  
Tao Liu ◽  
Rong Bin Du ◽  
Xue Jun Kong

Composite oxides materials CuSnO3as anode materials for lithium-ion batteries were synthesized by chemical coprecipitation method using SnCl4•5H2O, NH3•H2O and Cu(NO3)2•3H2O as raw materials.The precursor CuSn(OH)6and CuSnO3powders were characterized by thermogravimertric(TG) analysis and differential thermal analysis(DTA), X-ray diffraction(XRD), and transmission electron microscope (TEM). The electrochemical properties of CuSnO3powders as anode materials of lithium ion batteries were investigated comparatively by galvanostatic charge-discharge experiments. The results show the average particle size of amorphous CuSnO3is 70nm. The initial capacity during the first lithium insertion is 1078 mA•h/g and the reversible charge capacity in first cycle is 775 mA•h/g. After 20 cycles, the charge capacity is 640 mA•h/g and this material shows moderate capacity fading with cycling. As a novel anode material for lithium ion batteries, amorphous CuSnO3demonstrates a large capacity and a low insertion potential with respect to Li metal.


2004 ◽  
pp. 79-90
Author(s):  
Vesna Vratusa

Efficient nursery production of woody plants, as well as the level of their successful application in urban green spaces, greatly depends upon properties of substrates in which these individuals grow, develop and endure. Furthermore, quality of substrate does not only affect the quality of future product (plant individual or green space), but distinctly determines its price. This element, extremely significant for all countries in transition, thus Serbia as well, commands finding ways of making qualitative, but least expensive substrate. The most logical solution is to use mixtures/substrates of precisely defined properties, composed of domestic components. Results presented in this paper imply that it is possible to create precisely such standard mixtures from domestic resources at relatively low cost, adjusted to needs of particular species, which would ultimately lead to successful, non-expensive nursery production and application of produced stock, both on domestic and foreign markets.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Daniel Pedraza ◽  
Jaime Díez ◽  
Isabel Izquierdo-Barba ◽  
Montserrat Colilla ◽  
María Vallet-Regí

AbstractThis manuscript reports an effective new alternative for the management of bone infection by the development of an antibiotic nanocarrier able to penetrate bacterial biofilm, thus enhancing antimicrobial effectiveness. This nanosystem, also denoted as “nanoantibiotic”, consists in mesoporous silica nanoparticles (MSNs) loaded with an antimicrobial agent (levofloxacin, LEVO) and externally functionalized with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMO) as targeting agent. This amine functionalization provides MSNs of positive charges, which improves the affinity towards the negatively charged bacteria wall and biofilm. Physical and chemical properties of the nanoantibiotic were studied using different characterization techniques, including Xray diffraction (XRD), transmission electron microscopy (TEM), N


Sign in / Sign up

Export Citation Format

Share Document