scholarly journals Donor–acceptor type co-crystals of arylthio-substituted tetrathiafulvalenes and fullerenes

2015 ◽  
Vol 11 ◽  
pp. 1043-1051 ◽  
Author(s):  
Xiaofeng Lu ◽  
Jibin Sun ◽  
Shangxi Zhang ◽  
Longfei Ma ◽  
Lei Liu ◽  
...  

A series of donor–acceptor type co-crystals of fullerene (as the acceptor) and arylthio-substituted tetrathiafulvalene derivatives (Ar-S-TTF, as the donor) were prepared and their structural features were thoroughly investigated. The formation of co-crystals relies on the flexibility of Ar-S-TTF and the size matches between Ar-S-TTF and fullerene. Regarding their compositions, the studied co-crystals can be divided into two types, where types I and II have donor:acceptor ratios of 1:1 and 1:2, respectively. Multiple intermolecular interactions are observed between the donor and acceptor, which act to stabilize the structures of the resulting co-crystals. In the type I co-crystals, the fullerene molecule is surrounded by four Ar-S-TTF molecules, that is, two Ar-S-TTF molecules form a sandwich structure with one fullerene molecule and the other two Ar-S-TTF molecules interact with the fullerene molecule along their lateral axes. In the type II co-crystals, one fullerene molecule has the donor–acceptor mode similar to that in type I, whereas the other fullerene molecule is substantially surrounded by the aryl groups on Ar-S-TTF molecules and the solvent molecules.

Author(s):  
T.A. Fassel ◽  
M.J. Schaller ◽  
M.E. Lidstrom ◽  
C.C. Remsen

Methylotrophic bacteria play an Important role in the environment in the oxidation of methane and methanol. Extensive intracytoplasmic membranes (ICM) have been associated with the oxidation processes in methylotrophs and chemolithotrophic bacteria. Classification on the basis of ICM arrangement distinguishes 2 types of methylotrophs. Bundles or vesicular stacks of ICM located away from the cytoplasmic membrane and extending into the cytoplasm are present in Type I methylotrophs. In Type II methylotrophs, the ICM form pairs of peripheral membranes located parallel to the cytoplasmic membrane. Complex cell wall structures of tightly packed cup-shaped subunits have been described in strains of marine and freshwater phototrophic sulfur bacteria and several strains of methane oxidizing bacteria. We examined the ultrastructure of the methylotrophs with particular view of the ICM and surface structural features, between representatives of the Type I Methylomonas albus (BG8), and Type II Methylosinus trichosporium (OB-36).


2001 ◽  
Vol 38 (02) ◽  
pp. 542-553 ◽  
Author(s):  
Ji Hwan Cha

In this paper two burn-in procedures for a general failure model are considered. There are two types of failure in the general failure model. One is Type I failure (minor failure) which can be removed by a minimal repair or a complete repair and the other is Type II failure (catastrophic failure) which can be removed only by a complete repair. During a burn-in process, with burn-in Procedure I, the failed component is repaired completely regardless of the type of failure, whereas, with burn-in Procedure II, only minimal repair is done for the Type I failure and a complete repair is performed for the Type II failure. In field use, the component is replaced by a new burned-in component at the ‘field use age’ T or at the time of the first Type II failure, whichever occurs first. Under the model, the problems of determining optimal burn-in time and optimal replacement policy are considered. The two burn-in procedures are compared in cases when both the procedures are applicable.


1998 ◽  
Vol 80 (2) ◽  
pp. 914-923 ◽  
Author(s):  
Michinori Kubota ◽  
Ikuo Taniguchi

Kubota, Michinori and Ikuo Taniguchi. Electrophysiological characteristics of classes of neuron in the HVc of the zebra finch. J. Neurophysiol. 80: 914–923, 1998. Whole cell recordings were made from zebra finch HVc neurons in slice preparations. Four distinct classes of neuron were found on the basis of their electrophysiological properties. The morphological characteristics of some of these neurons were also examined by intracellular injection of Lucifer yellow. Type I neurons (21 of 65 cells) had longer time-to-peak of an afterhyperpolarization following an action potential than the other classes. They exhibited both fast and time-dependent inward rectification and an initial high-frequency firing followed by a slower constant firing. Type I neurons had large somata and thick dendrites with many spines. The axons of some of the neurons in this class projected in the direction of area X of the parolfactory lobe. Type II neurons (30 of 65 cells) had a more negative resting membrane potential than the other classes. They exhibited fast inward rectification. Type II neurons could be divided into two subclasses by the absence (IIa; 22 cells) and the presence (IIb; 8 cells) of a low-threshold transient depolarization. Type IIa neurons had relatively small somata and thin, spiny dendrites. The axons of some of the neurons in this class projected in the direction of the robust nucleus of the archistriatum (RA). Type IIb neurons had relatively large somata and thick dendrites with many spines. Type III neurons (6 of 65 cells) had a shorter action-potential duration than the other classes. They exhibited prominent time-dependent inward rectification and a regular tonic firing with little or no accommodation. Type III neurons had beaded, aspiny dendrites. Type IV neurons (8 of 65 cells) had a longer action-potential duration, a much larger input resistance, and longer membrane time constant than the other classes. Type IV neurons had small somata and thin, short, sparsely spiny dendrites. The axons of some of the neurons in this class projected in the direction of the RA. These classes of neuron may play distinct roles in song production and representation in the HVc.


1989 ◽  
Vol 257 (1) ◽  
pp. R87-R95 ◽  
Author(s):  
A. Gnionsahe ◽  
M. Claire ◽  
N. Koechlin ◽  
J. P. Bonvalet ◽  
N. Farman

Distal segment of several amphibians exhibits aldosterone-modulated ion transport properties. On the other hand, A6 cells, derived from Xenopus laevis (XL) kidney, are aldosterone sensitive. We examined the distribution of aldosterone binding sites in isolated tubules of XL compared with rabbit. After incubation with 2 nM [3H]aldosterone, microdissected tubular segments from proximal (PT), distal straight segment (DST), and flask cell collecting (CT) tubules from XL and from rabbit cortical thick ascending limb (CTAL), connecting (CNT), and collecting (CCD) tubules were processed for dry film autoradiography. In XL, specific nuclear labeling of type I (mineralocorticoid) sites was restricted to DST. Labeling of type II (glucocorticoid) sites was present all along the tubule. No specific cytoplasmic labeling was observed, except for type II sites in PT. In the rabbit, aldosterone binds to both type I and type II sites in the three tubular segments studied. In these segments, the binding was about fourfold higher than in DST of XL. These results bring direct evidence in designating the distal tubule of amphibians as a target epithelium for aldosterone. In addition, they suggest that A6 cell line may derive from DST of the Xenopus nephron.


Toxins ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 262 ◽  
Author(s):  
Sabine Brantl ◽  
Peter Müller

Toxin–antitoxin (TA) systems were originally discovered as plasmid maintenance systems in a multitude of free-living bacteria, but were afterwards found to also be widespread in bacterial chromosomes. TA loci comprise two genes, one coding for a stable toxin whose overexpression kills the cell or causes growth stasis, and the other coding for an unstable antitoxin that counteracts toxin action. Of the currently known six types of TA systems, in Bacillus subtilis, so far only type I and type II TA systems were found, all encoded on the chromosome. Here, we review our present knowledge of these systems, the mechanisms of antitoxin and toxin action, and the regulation of their expression, and we discuss their evolution and possible physiological role.


1998 ◽  
Vol 9 (9) ◽  
pp. 2681-2697 ◽  
Author(s):  
Kenneth Moss ◽  
Andrew Helm ◽  
Yun Lu ◽  
Alvina Bragin ◽  
William R. Skach

Topogenic determinants that direct protein topology at the endoplasmic reticulum membrane usually function with high fidelity to establish a uniform topological orientation for any given polypeptide. Here we show, however, that through the coupling of sequential translocation events, native topogenic determinants are capable of generating two alternate transmembrane structures at the endoplasmic reticulum membrane. Using defined chimeric and epitope-tagged full-length proteins, we found that topogenic activities of two C-trans (type II) signal anchor sequences, encoded within the seventh and eighth transmembrane (TM) segments of human P-glycoprotein were directly coupled by an inefficient stop transfer (ST) sequence (TM7b) contained within the C-terminus half of TM7. Remarkably, these activities enabled TM7 to achieve both a single- and a double-spanning TM topology with nearly equal efficiency. In addition, ST and C-trans signal anchor activities encoded by TM8 were tightly linked to the weak ST activity, and hence topological fate, of TM7b. This interaction enabled TM8 to span the membrane in either a type I or a type II orientation. Pleiotropic structural features contributing to this unusual topogenic behavior included 1) a short, flexible peptide loop connecting TM7a and TM7b, 2) hydrophobic residues within TM7b, and 3) hydrophilic residues between TM7b and TM8.


2008 ◽  
Vol 5 (suppl_1) ◽  
Author(s):  
Emery Conrad ◽  
Avraham E Mayo ◽  
Alexander J Ninfa ◽  
Daniel B Forger

Many biological systems contain both positive and negative feedbacks. These are often classified as resonators or integrators. Resonators respond preferentially to oscillating signals of a particular frequency. Integrators, on the other hand, accumulate a response to signals. Computational neuroscientists often refer to neurons showing integrator properties as type I neurons and those showing resonator properties as type II neurons. Guantes & Poyatos have shown that type I or type II behaviour can be seen in genetic clocks. They argue that when negative feedback occurs through transcription regulation and post-translationally, genetic clocks act as integrators and resonators, respectively. Here we show that either behaviour can be seen with either design and in a wide range of genetic clocks. This highlights the importance of parameters rather than biochemical mechanism in determining the system behaviour.


1975 ◽  
Vol 53 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Chung-Hsi Huang ◽  
Osvald Knop ◽  
David A. Othen ◽  
Frank W. D. Woodhams ◽  
R. Allan Howie

Cubic M4+P2O7 pyrophosphates of Ti, Zr, Hf, Sn, and Pb have been examined by X-ray powder diffractometry and by infrared, Raman, and Mössbauer 119Sn spectroscopy. The tin compound appeared to be of Chaunac's type I (with P2O7 groups oriented at random) and could be converted to type II (with ordered P2O7 groups) by heating to high temperatures. All the other preparations were of Chaunac's type II. Evidence from lattice parameters and intensity features of the Raman spectra suggests that the cubic MP2O7 pyrophosphates fall in two groups, one containing the compounds of the typical elements (Ge, Sn, Pb) and the other, the compounds of the transition elements. No support has been found for the view that the P—O—P groupings of the pyrophosphate anion in these compounds are linear. The 119Sn chemical shift in SnP2O7 is only slightly less negative than the shift in CuSnF6.4H2O, which makes SnP2O7 one of the most ionic compounds of tetravalent tin known. The observed quadrupole splitting in the Mössbauer spectrum of SnP2O7 arises largely from the contribution of the valence term to the electric field gradient at the Sn atom.


2005 ◽  
Vol 284-286 ◽  
pp. 537-540
Author(s):  
Patricia Valério ◽  
C.C.P. Mendes ◽  
Marivalda Pereira ◽  
Alfredo Goes ◽  
M. Fatima Leite

Osteoblasts constitutively release glutamate and this release appears to be regulated by calcium entry. In this work we investigated if the bioactive glass with 60% of silicon (BG60S) could alter glutamate release by osteoblasts. We demonstrated that osteoblasts incubated with medium containing ionic products from the dissolution of BG60S showed lower release of glutamate when compared to control. Since intracellular calcium (Cai 2+) increase is required for glutamate release we investigated the subcellular distribution of the calcium channel inositol triphosphate receptors (InsP3Rs) in the presence of BG60S compared to control. We found that the type-III InsP3R was not expressed in osteoblast, while the type-II InsP3R was expressed mainly in the cytosol. We also found that the expression of type-II InsP3R decreased in BG60S treated osteoblasts compared to control. On the other hand, we found that the type-I InsP3R was expressed mainly in the nucleus and its expression increased in the presence of the biomaterial.


2003 ◽  
Vol 83 (2) ◽  
pp. 309-336 ◽  
Author(s):  
Alan R. Burns ◽  
C. Wayne Smith ◽  
David C. Walker

Neutrophil emigration in the lung differs substantially from that in systemic vascular beds where extravasation occurs primarily through postcapillary venules. Migration into the alveolus occurs directly from alveolar capillaries and appears to progress through a sequence of steps uniquely influenced by the cellular anatomy and organization of the alveolar wall. The cascade of adhesive and stimulatory events so critical to the extravasation of neutrophils from postcapillary venules in many tissues is not evident in this setting. Compelling evidence exists for unique cascades of biophysical, adhesive, stimulatory, and guidance factors that arrest neutrophils in the alveolar capillary bed and direct their movement through the endothelium, interstitial space, and alveolar epithelium. A prominent path accessible to the neutrophil appears to be determined by the structural interactions of endothelial cells, interstitial fibroblasts, as well as type I and type II alveolar epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document