STIMULATION OF SOME GENES OF GENERAL ANTI-VIRAL IMMUNITY BY COMPLEX PLANT PREPARATION

Author(s):  
А. Bogoyavlenskiy ◽  
М. Alexyuk ◽  
E. Omirtaeva ◽  
K. Akanova ◽  
V. Berezin

It was shown that the activation of genes that play a decisive role in the recognition of RNA of viruses that enter the cell through receptor-mediated endocytosis or phagocytosis can be significantly increased by introducing of nonspecific immunostimulants of plant origin containing triterpene with glycosylated methoxyflavonoid.

Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 4011-4018
Author(s):  
Maikel P. Peppelenbosch ◽  
Marjory DeSmedt ◽  
Tessa ten Hove ◽  
Sander J.H. van Deventer ◽  
Johan Grooten

Lipopolysaccharide (LPS) is a mediator of inflammation and septic shock during bacterial infection. Although monocytes and macrophages are highly responsive to LPS, the biological effects of LPS in these cell types are only partially understood. We decided, therefore, to investigate the influence of LPS on macrophage pinocytosis and Fc receptor–mediated endocytosis, two prominent and related macrophage effector functions. We observed that LPS did not greatly influence endocytosis in either macrophages or monocytes, but did exert a dual action on pinocytosis: at lower concentrations (0.1 to 100 ng/mL), LPS caused a decrease in pinocytosis in both macrophages and monocytes, whereas at higher LPS concentrations, enhanced pinocytosis in macrophages was observed. Detoxified LPS was two orders of magnitude less potent in producing these effects. After inhibition of the LPS receptor CD14, the LPS-induced decrease in pinocytosis was absent, and stimulation of pinocytosis at lower LPS concentrations was unmasked. We conclude that LPS can influence pinocytosis via CD14-dependent and CD14-independent signaling pathways. Furthermore, as addition of LPS to macrophages effected pinocytosis but not Fc receptor–mediated endocytosis, these two processes are independently regulated in macrophages.


1985 ◽  
Vol 30 (3) ◽  
pp. 258-266 ◽  
Author(s):  
H. Tlaskalová-Hogenová ◽  
J. Bártová ◽  
L. Mrklas ◽  
P. Mančal ◽  
Z. Broukal ◽  
...  

2016 ◽  
Vol 40 (3-4) ◽  
pp. 558-566 ◽  
Author(s):  
Morena Mischitelli ◽  
Mohamed Jemaà ◽  
Mustafa Almasry ◽  
Caterina Faggio ◽  
Florian Lang

Background/Aims: The phytochemical polyphenol rottlerin is a potent activator of diverse Ca2+ -sensitive K+ channels. Those channels play a decisive role in the execution of eryptosis, the suicidal death of erythrocytes, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the stimulation of eryptosis includes increase of cytosolic Ca2+ activity ([Ca2+]i) and ceramide. The present study explored, whether rottlerin induces eryptosis and, if so, to test for the involvement of Ca2+ entry and ceramide. Methods: Flow cytometry was employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified by determination of haemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to rottlerin (1 - 5 µM) significantly increased the percentage of annexin-V-binding cells, an effect paralleled by significant decrease of forward scatter. Up to 5 µM rottlerin failed to significantly increase average Fluo3-fluorescence. Rottlerin (5 µM) did, however, significantly increase the ceramide abundance. Rottlerin (5 µM) further significantly increased hemolysis. The effect of rottlerin (5 µM) on annexin-V-binding was virtually abolished by removal of extracellular Ca2+. Conclusions: Rottlerin stimulates eryptosis with erythrocyte shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect paralleled by and at least in part due to Ca2+ entry and ceramide.


1993 ◽  
Vol 41 (8) ◽  
pp. 1305-1310 ◽  
Author(s):  
Enrique. Vasquez ◽  
William. Jakinovich ◽  
N. P. Dhammika. Nanayakkara ◽  
Raouf A. Hussain ◽  
Myung Sook. Chung ◽  
...  

Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 4011-4018 ◽  
Author(s):  
Maikel P. Peppelenbosch ◽  
Marjory DeSmedt ◽  
Tessa ten Hove ◽  
Sander J.H. van Deventer ◽  
Johan Grooten

Abstract Lipopolysaccharide (LPS) is a mediator of inflammation and septic shock during bacterial infection. Although monocytes and macrophages are highly responsive to LPS, the biological effects of LPS in these cell types are only partially understood. We decided, therefore, to investigate the influence of LPS on macrophage pinocytosis and Fc receptor–mediated endocytosis, two prominent and related macrophage effector functions. We observed that LPS did not greatly influence endocytosis in either macrophages or monocytes, but did exert a dual action on pinocytosis: at lower concentrations (0.1 to 100 ng/mL), LPS caused a decrease in pinocytosis in both macrophages and monocytes, whereas at higher LPS concentrations, enhanced pinocytosis in macrophages was observed. Detoxified LPS was two orders of magnitude less potent in producing these effects. After inhibition of the LPS receptor CD14, the LPS-induced decrease in pinocytosis was absent, and stimulation of pinocytosis at lower LPS concentrations was unmasked. We conclude that LPS can influence pinocytosis via CD14-dependent and CD14-independent signaling pathways. Furthermore, as addition of LPS to macrophages effected pinocytosis but not Fc receptor–mediated endocytosis, these two processes are independently regulated in macrophages.


2021 ◽  
Author(s):  
Markus Lehtinen ◽  
Ritesh Kumar ◽  
Bryan Zabel ◽  
Sanna M Makela ◽  
Derek Nedveck ◽  
...  

Probiotics have been suggested as one solution to counter detrimental health effects by SARS-CoV-2, however, data so far is scarce. We tested the effect of two probiotic consortia, OL-1 and OL-2, against SARS-CoV-2 in ferrets and assessed their effect on cytokine production and transcriptome in a human monocyte-derived macrophage (Mf) and dendritic cell (DC) model. The results showed that the consortia significantly reduced the viral load, modulated immune response, and regulated viral receptor expression in ferrets compared to placebo. In human Mf and DC model, OL-1 and OL-2 induced cytokine production and genes related to SARS-CoV-2 anti-viral immunity. The study results indicate that probiotic stimulation of the ferret immune system leads to improved anti-viral immunity against SARS-COV-2 and that critical genes and cytokines for anti-SARS-CoV-2 immunity are stimulated in human immune cells in vitro. The effect of the consortia against SARS-CoV-2 warrants further investigations in human clinical trials.


Cytokine ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 309
Author(s):  
Cassandra M. James ◽  
Seamus Duffy ◽  
Dean Pemberton ◽  
Anthony Armson ◽  
Philip A. Stumbles

Author(s):  
E. A. Elfont ◽  
R. B. Tobin ◽  
D. G. Colton ◽  
M. A. Mehlman

Summary5,-5'-diphenyl-2-thiohydantoin (DPTH) is an effective inhibitor of thyroxine (T4) stimulation of α-glycerophosphate dehydrogenase in rat liver mitochondria. Because this finding indicated a possible tool for future study of the mode of action of thyroxine, the ultrastructural and biochemical effects of DPTH and/or thyroxine on rat liver mere investigated.Rats were fed either standard or DPTH (0.06%) diet for 30 days before T4 (250 ug/kg/day) was injected. Injection of T4 occurred daily for 10 days prior to sacrifice. After removal of the liver and kidneys, part of the tissue was frozen at -50°C for later biocheailcal analyses, while the rest was prefixed in buffered 3.5X glutaraldehyde (390 mOs) and post-fixed in buffered 1Z OsO4 (376 mOs). Tissues were embedded in Araldlte 502 and the sections examined in a Zeiss EM 9S.Hepatocytes from hyperthyroid rats (Fig. 2) demonstrated enlarged and more numerous mitochondria than those of controls (Fig. 1). Glycogen was almost totally absent from the cytoplasm of the T4-treated rats.


Author(s):  
Ji-da Dai ◽  
M. Joseph Costello ◽  
Lawrence I. Gilbert

Insect molting and metamorphosis are elicited by a class of polyhydroxylated steroids, ecdysteroids, that originate in the prothoracic glands (PGs). Prothoracicotropic hormone stimulation of steroidogenesis by the PGs at the cellular level involves both calcium and cAMP. Cell-to-cell communication mediated by gap junctions may play a key role in regulating signal transduction by controlling the transmission of small molecules and ions between adjacent cells. This is the first report of gap junctions in the PGs, the evidence obtained by means of SEM, thin sections and freeze-fracture replicas.


Author(s):  
Takeshi Baba ◽  
Nobuki Shiozawa ◽  
Masao Hotch ◽  
Shinichi Ohno

Endosomes are vesicular or tubular organelles that play important roles in transports of receptors and receptor―bound ligands during receptor-mediated endocytosis. The mechanisms of endocytic transports from clathrin-coated pits to lysosomes have been studied by many investigators. However, few studies were reported about the interactions between endosomes and cytoskeletons. In this study, Fc-receptor-mediated endocytosis in macrophages are investigated by quick-freezing and deep-etching (QF-DE) method combined with gold-labeled immune complex and “replica scraping method”.


Sign in / Sign up

Export Citation Format

Share Document