scholarly journals A COMPARISON OF METABOLITES IN WOOD-FORMING TISSUES FROM EIGHT COMMERCIAL TIMBER TREE SPECIES OF HEILONGJIANG PROVINCE IN CHINA

Wood Research ◽  
2021 ◽  
Vol 66 (5) ◽  
pp. 746-761
Author(s):  
JIANGTAO SHI ◽  
JUNYI PENG ◽  
CHONGYANG XIA ◽  
JIAN LI

Four coniferous and four deciduous commercial tree species from Northeastern ofChina were selected to investigate the differences ofmetabolites in wood-forming tissues bygas chromatography-mass spectrometry. The results showed that the identified metabolites mainly consisted of neutral sugars, lipids, and organic acids. The mean contents of both arabinofuranose and 1-cyclohexene-1-carboxylic acid were higher in coniferous trees thanin deciduous ones. Similarly, the D-fructose and D-glucose content was significantly higherin coniferous trees than deciduous trees, but the total contents of these two sugars was roughly equal among most tree species. The mean content of lactic acid, glycerol and malic acid was lowerin coniferous trees than deciduous trees. The malic acid content decreased in later-stages of wood formation than in early-stagefor all tree species. The content of L-proline and myo-inositol was greater in later-stage of wood formation than early-stage.The contentof octadecanoic acid, D-fructose and D-glucose decreased in later-stage of wood formationfor most tree species. All of thissuggested that the metabolites in wood-forming tissues showed the significance of species-specific and seasonal dynamic differences among the eight tree species.

Author(s):  
S. Briechle ◽  
P. Krzystek ◽  
G. Vosselman

<p><strong>Abstract.</strong> Most methods for the mapping of tree species are based on the segmentation of single trees that are subsequently classified using a set of hand-crafted features and an appropriate classifier. The classification accuracy for coniferous and deciduous trees just using airborne laser scanning (ALS) data is only around 90% in case the geometric information of the point cloud is used. As deep neural networks (DNNs) have the ability to adaptively learn features from the underlying data, they have outperformed classic machine learning (ML) approaches on well-known benchmark datasets provided by the robotics, computer vision and remote sensing community. Though, tree species classification using deep learning (DL) procedures has been of minor research interest so far. Some studies have been conducted based on an extensive prior generation of images or voxels from the 3D raw data. Since innovative DNNs directly operate on irregular and unordered 3D point clouds on a large scale, the objective of this study is to exemplarily use PointNet++ for the semantic labeling of ALS point clouds to map deciduous and coniferous trees. The dataset for our experiments consists of ALS data from the Bavarian Forest National Park (366 trees/ha), only including spruces (coniferous) and beeches (deciduous). First, the training data were generated automatically using a classic feature-based Random Forest (RF) approach classifying coniferous trees (precision&amp;thinsp;=&amp;thinsp;93%, recall&amp;thinsp;=&amp;thinsp;80%) and deciduous trees (precision&amp;thinsp;=&amp;thinsp;82%, recall&amp;thinsp;=&amp;thinsp;92%). Second, PointNet++ was trained and subsequently evaluated using 80 randomly chosen test batches à 400&amp;thinsp;m<sup>2</sup>. The achieved per-point classification results after 163 training epochs for coniferous trees (precision&amp;thinsp;=&amp;thinsp;90%, recall&amp;thinsp;=&amp;thinsp;79%) and deciduous trees (precision&amp;thinsp;=&amp;thinsp;81%, recall&amp;thinsp;=&amp;thinsp;91%) are fairly high considering that only the geometry was included. Nevertheless, the classification results using PointNet++ are slightly lower than those of the baseline method using a RF classifier. Errors in the training data and occurring edge effects limited a better performance. Our first results demonstrate that the architecture of the 3D DNN PointNet++ can successfully be adapted to the semantic labeling of large ALS point clouds to map deciduous and coniferous trees. Future work will focus on the integration of additional features like i.e. the laser intensity, the surface normals and multispectral features into the DNN. Thus, a further improvement of the accuracy of the proposed approach is to be expected. Furthermore, the classification of numerous individual tree species based on pre-segmented single trees should be investigated.</p>


Weed Science ◽  
2020 ◽  
pp. 1-23
Author(s):  
Tao Li ◽  
Jiequn Fan ◽  
Zhenguan Qian ◽  
Guohui Yuan ◽  
Dandan Meng ◽  
...  

Abstract The use of a corn-earthworm coculture (CE) system is an eco-agricultural technology that has been gradually extended due to its high economic output and diverse ecological benefits for urban agriculture in China. However, the effect of CE on weed occurrence has received little attention. A five-year successive experiment (2015 to 2019) was conducted to compare weed occurrence in CE and a corn (Zea mays L.) monoculture (CM). The results show that CE significantly decreased weed diversity, the dominance index, total weed density and biomass, but increased the weed evenness index. The five-year mean number of weed species per plot was 8.4 in CE and 10.7 in CM. Compared to those in CM, the five-year mean density and biomass of total weeds in CE decreased by 59.2% and 66.6%, respectively. The effect of CE on weed occurrence was species specific. The mean density of large crabgrass [Digitaria sanguinalis (L.) Scop.], green foxtail [Setaria viridis (L.) Beauv.], goosegrass [Eleusine indica (L.) Gaertn.], and common purslane (Portulaca oleracea L.) in CE decreased by 94.5, 78.1, 75.0, and 45.8%, whereas the mean biomass decreased by 96.2, 80.8, 76.9, and 41.4%, respectively. Our study suggests that the use of CE could suppress weed occurrence and reduce herbicide inputs in agriculture.


1995 ◽  
Vol 12 (3) ◽  
pp. 115-120 ◽  
Author(s):  
David B. Kittredge ◽  
P. Mark S. Ashton

Abstract Browsing preferences by white-tailed deer were evaluated for 6 tree species in northeastern Connecticut. Deer density averaged 23/mile². Deer exhibited no species-specific preferences for seedlings greater than 19 in. For seedlings less than 19 in., hemlock and black birch were preferred. Red maple, sugar maple, and white pine seedlings were avoided. Red oak seedlings were neither preferred nor avoided. A much higher proportion of seedlings greater than 19.7 in. in height was browsed, regardless of species. Browsing preferences for species in the smaller seedling class, combined with a lack of preference for species in the larger class may result in future stands with less diverse tree species composition. Deer densities in excess of 23/mile² may be incompatible with regeneration of diverse forests in southern New England. North. J. Appl. For. 12(3):115-120.


Zygote ◽  
2003 ◽  
Vol 11 (3) ◽  
pp. 261-270 ◽  
Author(s):  
Bong-Ki Kim ◽  
Sun Hong Cheon ◽  
Youn Jeong Lee ◽  
Sun Ho Choi ◽  
Xiang Shun Cui ◽  
...  

The onset of pronucleus formation and DNA synthesis in porcine oocytes following the injection of porcine or murine sperm was determined in order to obtain insights into species-specific paternal factors that contribute to fertilisation. Similar frequencies of oocytes with female pronuclei were observed after injection with porcine sperm or with murine sperm. In contrast, male pronuclei formed 8-9 h following the injection of porcine sperm, and 6-8 h following the injection of murine sperm. After pronucleus formation maternally derived microtubules were assembled and appeared to move both male and female pronuclei to the oocyte centre. A few porcine oocytes entered metaphase 22 h after the injection of murine sperm, but normal cell division was not observed. The mean time of onset of S-phase in male pronuclei was 9.7 h following porcine sperm injection and 7.4 h following mouse sperm injection. Ultrastructural observation revealed that male pronuclei derived from murine sperm in porcine oocytes are morphologically similar to normal male pronuclei in porcine zygotes. These results suggest that species-specific paternal factors influence the onset of pronucleus formation and DNA synthesis. However, normal nuclear cytoplasmic interactions were observed in porcine S-phase oocytes following murine sperm injection.


1989 ◽  
Vol 12 (2) ◽  
pp. 55
Author(s):  
R.W. Braithwaite

The location of shelter used by nine species of small mammals released after capture during a mark-recapture study in tropical woodland and open forest was recorded whenever possible. A quantitative profile of such post-release behaviour by different species permits its incorporation into analyses of habitat selection. Characteristics of post-release behaviour also provide clues about the nature of predation pressure on various species. Arboreal species tended to select tree species with boles having camouflage potential. Small species used small holes. Scansorial species used the greatest range of sheltering sites. Average distance moved to shelter was inversely related to the mean density of a species.


2021 ◽  
Author(s):  
Marili Sell ◽  
Ivika Ostonen ◽  
Gristin Rohula-Okunev ◽  
Azadeh Rezapour ◽  
Priit Kupper

&lt;p&gt;Global climate change scenarios predict increasing air temperature, enhanced precipitation and air humidity for Northern latitudes. We&amp;#8239;investigated the effects of elevated air relative humidity (RH) and different inorganic nitrogen&amp;#8239;sources&amp;#8239;(NO&lt;sub&gt;3&lt;/sub&gt;&lt;sup&gt;-&lt;/sup&gt;, NH&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;) on above- and belowground traits in different tree species, with particular emphasis on rhizodeposition rates. Silver birch, hybrid aspen and Scots pine saplings were grown in PERCIVAL growth chambers with stabile temperature, light intensity and two different air humidity conditions: moderate (mRH, 65% at day and 80% at night) and elevated (eRH, 80% at day and night). The collection of fine root exudates was conducted by a culture-based cuvette method and total organic carbon content was determined by Vario TOC analyser. Fine root respiration was measured with an infra-red gas analyser CIRAS 2.&amp;#8239;&amp;#160;&lt;/p&gt;&lt;p&gt;We analysed species-specific biomass allocation, water and rhizodeposition fluxes, foliar and fine root traits in response to changing environmental conditions. The&amp;#8239;eRH&amp;#8239;significantly decreased the transpiration flux in all species. In birch the transpiration flux was also affected by the nitrogen source. The average carbon exudation rate for aspen, birch and pine varied from 2 to 3 &amp;#8239;&amp;#956;g&amp;#8239;C g&lt;sup&gt;-1&lt;/sup&gt;&amp;#8239;day&amp;#8239;&lt;sup&gt;-1&lt;/sup&gt;. The exudation rates for deciduous tree species tended to increase at&amp;#8239;eRH, while conversely decreased for coniferous trees (p=0.045), coinciding with the changes in biomass allocation.&amp;#8239;C flux released by fine root respiration varied more than the fine root exudation, whereas the highest root respiration was found in silver birch and lowest in aspen. At eRH the above and belowground&amp;#8239;biomass ratio in aspen increased, at the expense of decreased root biomass and root respiration.&amp;#8239;&amp;#160;&lt;/p&gt;&lt;p&gt;Moreover,&amp;#8239;eRH&amp;#8239;significantly affected fine root morphology, whereas the response of specific root area was reverse for deciduous and coniferous tree species. However, fine roots with lower root tissue density had higher C exudation rate. Our findings underline the importance of considering species-specific differences by&amp;#8239;elucidating tree&amp;#8217;s&amp;#8239;acclimation&amp;#8239;to environmental factors and their&amp;#8239;interactions.&amp;#8239;&amp;#8239;&amp;#160;&lt;/p&gt;


Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 82 ◽  
Author(s):  
Yasutomo Hoshika ◽  
Elisa Carrari ◽  
Barbara Mariotti ◽  
Sofia Martini ◽  
Alessandra De Marco ◽  
...  

This study investigated visible foliar ozone (O3) injury in three deciduous tree species with different growth patterns (indeterminate, Alnus glutinosa (L.) Gaertn.; intermediate, Sorbus aucuparia L.; and determinate, Vaccinium myrtillus L.) from May to August 2018. Ozone effects on the timing of injury onset and a plant injury index (PII) were investigated using two O3 indices, i.e., AOT40 (accumulative O3 exposure over 40 ppb during daylight hours) and PODY (phytotoxic O3 dose above a flux threshold of Y nmol m−2 s−1). A new parameterization for PODY estimation was developed for each species. Measurements were carried out in an O3 free-air controlled exposure (FACE) experiment with three levels of O3 treatment (ambient, AA; 1.5 × AA; and 2.0 × AA). Injury onset was found in May at 2.0 × AA in all three species and the timing of the onset was determined by the amount of stomatal O3 uptake. It required 4.0 mmol m−2 POD0 and 5.5 to 9.0 ppm·h AOT40. As a result, A. glutinosa with high stomatal conductance (gs) showed the earliest emergence of O3 visible injury among the three species. After the onset, O3 visible injury expanded to the plant level as confirmed by increased PII values. In A. glutinosa with indeterminate growth pattern, a new leaf formation alleviated the expansion of O3 visible injury at the plant level. V. myrtillus showed a dramatic increase of PII from June to July due to higher sensitivity to O3 in its flowering and fruiting stage. Ozone impacts on PII were better explained by the flux-based index, PODY, as compared with the exposure-based index, AOT40. The critical levels (CLs) corresponding to PII = 5 were 8.1 mmol m−2 POD7 in A. glutinosa, 22 mmol m−2 POD0 in S. aucuparia, and 5.8 mmol m−2 POD1 in V. myrtillus. The results highlight that the CLs for PII are species-specific. Establishing species-specific O3 flux-effect relationships should be key for a quantitative O3 risk assessment.


Author(s):  
Johannes Breidenbach ◽  
Lars T. Waser ◽  
Misganu Debella-Gilo ◽  
Johannes Schumacher ◽  
Johannes Rahlf ◽  
...  

Nation-wide Sentinel-2 mosaics were used with National Forest Inventory (NFI) plot data for modelling and subsequent mapping of spruce-, pine- and deciduous-dominated forest in Norway at a 16m×16m resolution. The accuracies of the best model ranged between 74% for spruce and 87% for deciduous forest. An overall accuracy of 90% was found on stand level using independent data from more than 42,000 stands. Errors mostly resulting from a forest mask reduced the model accuracies by approximately 10%. The produced map was subsequently used to generate model-assisted (MA) and post stratified (PS) estimates of species-specific forest area. At the national level, efficiencies of the estimates increased by 20% to 50% for MA and up to 90% for PS. Greater minimum numbers of observations constrained the use of PS. For MA estimates of municipalities, efficiencies improved by up to a factor of 8 but were sometimes also less than 1. PS estimates were always equally as or more precise than direct and MA estimates but were applicable in fewer municipalities. The tree species prediction map is part of the Norwegian forest resource map and is used, among others, to improve maps of other variables of interest such as timber volume and biomass.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 556 ◽  
Author(s):  
Masahiro Yamaguchi ◽  
Yoshiyuki Kinose ◽  
Hideyuki Matsumura ◽  
Takeshi Izuta

The current level of tropospheric ozone (O3) is expected to reduce the net primary production of forest trees. Here, we evaluated the negative effects of O3 on the photosynthetic CO2 uptake of Japanese forest trees species based on their cumulative stomatal O3 uptake, defined as the phytotoxic O3 dose (POD). Seedlings of four representative Japanese deciduous broad-leaved forest tree species (Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla var. japonica) were exposed to different O3 concentrations in open-top chambers for two growing seasons. The photosynthesis–light response curves (A-light curves) and stomatal conductance were measured to estimate the leaf-level cumulative photosynthetic CO2 uptake (ΣPn_est) and POD, respectively. The whole-plant-level ΣPn_est were highly correlated with the whole-plant dry mass increments over the two growing seasons. Because whole-plant growth is largely determined by the amount of leaf area per plant and net photosynthetic rate per leaf area, this result suggests that leaf-level ΣPn_est, which was estimated from the monthly A-light curves and hourly PPFD, could reflect the cumulative photosynthetic CO2 uptake of the seedlings per unit leaf area. Although the O3-induced reductions in the leaf-level ΣPn_est were well explained by POD in all four tree species, species-specific responses of leaf-level ΣPn_est to POD were observed. In addition, the flux threshold appropriate for the linear regression of the responses of relative leaf-level ΣPn_est to POD was also species-specific. Therefore, species-specific responses of cumulative photosynthetic CO2 uptake to POD could be used to accurately evaluate O3 impact on the net primary production of deciduous broad-leaved trees.


Sign in / Sign up

Export Citation Format

Share Document