scholarly journals DEEP - WATER HYPOXIC MEIOBENTHIC PROTOZOA AND METAZOA TAXA OF THE ISTANBUL STRAIT’S (BOSPORUS) OUTLET AREA OF THE BLACK SEA

2015 ◽  
Vol 2 (3) ◽  
pp. 255-270
Author(s):  
Nelli G. Sergeeva ◽  
Sofia A. Mazlumyan

The purpose of these investigations was to understand the response of different meiobenthos taxa on the oxygen depletion in the habitat in the deep-water areas of the Black Sea. The results of first study were published in TrJFAS (Sergeeva et al. 2013) and were devoted to vertical distribution of the deep-sea meiobenthic communities. This article includes a historical overview of research dedicated to meiobenthos and represents first detailed quantitative analysis of taxonomic composition and vertical distribution of main taxa of meiobenthos in the Istanbul Strait’s (Bosporus) outlet area of the Black Sea along the transition from oxic to anoxic conditions, where the sinking water is in contact with the bottom.  Nine stations were carried out in the Istanbul Strait’s outlet area of the Black Sea during 9th–21st November 2009 at the R/V ‘Arar’ cruise from the Istanbul University. The abundance and vertical distribution of main taxa of Protozoa (Ciliophora, Gromida and Foraminifera) and Metazoa (Nematoda, Polychaeta and Harpacticoida) on the Black Sea shelf and the upper slope area (75–300 m depth water) were studied. Meiobenthos was present at all investigated depths and included 21 taxa. Gromiids, hard-shell foraminifera and polychaetes were found at depths between 75–250 m, Ciliophora, soft-shelled foraminifera and nematodes were found at depths between 75–300m. Our data suggest that some benthic eukaryotes (protozoa and metazoa) can tolerate anoxic and sulfidic conditions of the Black Sea.

2013 ◽  
Vol 47 (3) ◽  
pp. 17-27 ◽  
Author(s):  
Kh. O. Kharkevych ◽  
N. G. Sergeeva

The results of investigations of tardigrades (2009-2010) in the Bosporus outlet area of the Black Sea are represented. For the first time two species of tardigrades Dipodarctus subterraneus (Renaud-Debyser, 1959) and Tanarctus ramazzottii (Renaud-Mornant, 1975) are recorded for the Black Sea. Tardigrades are registered on 4 stations at depths range 88-250 m. Average abundance of tardigrades widely varied from 141 to 11 440 ind./m2. The vertical distribution of tardigrades in the sediments was analyzed: most specimens (up to 98 %) found in the top 0-1 cm sediment layer.


Author(s):  
Svetlana Rubtsova ◽  
Svetlana Rubtsova ◽  
Natalya Lyamina ◽  
Natalya Lyamina ◽  
Aleksey Lyamin ◽  
...  

The concept of a new approach to environmental assessment is offered in the system of integrated management of the resource and environmental safety of the coastal area of the Black Sea. The studies of the season and daily changeability in the bioluminescence field in the Sevastopol coastal waters has been conducted. For the first time considerable differences in the bioluminescence field seasonal changes in the surface and deep water layers and the reasons conditioning this phenomenon have been shown, using a method of multidimensional statistical analysis. The bioluminescence field vertical profile change in the Black sea coastal waters in the autumn period at night has been studied. It has been shown that according to the character of bioluminescence parameters dynamics a water column can be divided into layers: upper (0 – 35 m) and deep water (36 – 60 m). It has been revealed that life rhythms of the plankton community are the main reason for the bioluminescence field intensity variability. It has been revealed that 14-hour periodicity of the bioluminescence field is related to the changes in light and its variations with 2,5…4,5 hours are conditioned by planktonts endogenous daily rhythms. And here biotic factors effect mostly periodicity of the bioluminescence field intensity increase and fall down at the dark time of the day. Abiotic factors are of less importance in circadian rhythmic of the bioluminescence field in the neritic zone.


1992 ◽  
Vol 99 (1-3) ◽  
pp. 1-27 ◽  
Author(s):  
Timothy W. Lyons ◽  
Robert A. Berner
Keyword(s):  

Author(s):  
Nikolay V Esin ◽  
Alexey V. Khortov ◽  
Nikolay I. Esin

One of the important unsolved problems related to the evolution of living conditions on Earth is the mechanism of the rapid transformation of the Black Sea from a shallow lake-type sea into a deep-water basin, the earth's crust in the central part of which does not have a granite layer. There is no explanation as to how “granite-free depressions” were formed at the bottom of the sea, which are currently covered by sediment. Investigations of these processes were started in the middle of the last century by scientists-geologists of the Institute of Oceanology of the Russian Academy of Sciences and its South. In this article, the authors propose a mechanism for the destruction of the earth's crust and the formation of depressions in the inner seas during the Messinian crisis.


Author(s):  
Paulo S. Young ◽  
Helmut Zibrowius ◽  
Ghazi Bitar

The geographic distribution of Verruca stroemia and V. spengleri are reviewed. Verruca stroemia ranges from the White, Barents, Norwegian, and North Seas south to Portugal to the Algarve and to Gorringe Bank. All of the records of this species from the Mediterranean Sea are considered to be V. spengleri. Verruca spengleri occurs in the Azores and Madeira archipelagos, in southern Spain (Cádiz), throughout the Mediterranean Sea from Gibraltar to Lebanon, and in the Black Sea. But a distinct deep-water Verruca species seems to occur in the deep Mediterranean.


2021 ◽  
Author(s):  
Valentina Yanko ◽  
Anna Kravchuk ◽  
Irina Kulakova ◽  
Tatiana Kondariuk

<p>This <span>presentation</span> represents a case study that reviews research into the relationship between meiobenthos distribution and concentrations of hydrocarbon gases (HG), primarily methane, in the sediments of the northwestern part of the Black Sea, including gases released by mud volcanoes and gas seeps. Evidence forming the basis of this research comes from meiobenthos here represented by 29 species of benthic foraminifers, 7 species of ostracods, and 44 species of nematodes. The potential use of these meiobenthic organisms as indicators of gaseous hydrocarbons reservoirs existing under the seabed is evaluated according to two linked axes, namely the dual analysis of abiotic factors (physical and chemical parameters of the water column, gasmetrical, geochemical, lithological, and mineralogical properties of the sediments) and biotic characteristics (quantitative and taxonomic composition of foraminifers, nematodes, and ostracods). Studies of this kind have been directed toward developing interdisciplinary methods to improve the search for HG accumulations, especially methane, under the seabed. Development of such methods might have substantial socio-economic importance for the economy of Ukraine as well as that of other Black Sea countries, and such methods might also contribute to the sustainable development of Black Sea ecosystems.</p>


Sign in / Sign up

Export Citation Format

Share Document