scholarly journals Effect of Different Weed Management Strategies on Population Changing Pattern of Pennisetum polystachion in Coconut Plantations of Sri Lanka

CORD ◽  
2019 ◽  
Vol 35 (01) ◽  
pp. 8
Author(s):  
S.H.S. Senarathne

Pennisetum polystachion is a major problematic monocotyledonous weed species and a perennial problem in intermediate zone of coconut plantations in Sri Lanka. This study was carried out to evaluate the impacts of different management systems on P. polystachion seedling emergence patterns.The tested treatments were application of glyphosate (T1), cover cropping with Pueraria phaseoloides (T2), tractor harrowing (T3), tractor slashing (T4) and tractor ploughing (T5). All the treatments were applied twice a year except T2. As T2 cover crop at the initiation of the experiment and over grown conditions were managed by harrowing once a year. Based on the reduction in weed biomass, cover cropping (T2) was the best to reduce the P. polystachion population and to reduce P. polystachion seedling emergence density in the field. Chemical weeding was the second-best method to control the P. polystachion population in the field. The effectiveness of slashing in reducing weed seedling emergence density was lower than cover cropping and chemical weeding methods. The weed seedling emergence densities were almost similar in ploughed and harrowed plots. The seed depth of emerged seedling was very high in harrowed and ploughed treatments when compared to other treatments. Results given by T3 and T5 indicates that loosening the soil creates more favorable environment for the germination of weed seeds buried in soil. Therefore, it can be argued that the elimination of weed seeds in the top 2cm or 4cm in the soil seed bank by any means is likely to reduce the level of weed infestation by about 60% to 95%. Results also indicated that burying rhizomes in ploughing and harrowing treatment plots at the depths below 30 - 40 cm is effective in controlling germination of this weed species. This experiment also suggested that keeping rhizomes on the soil surface without burying for durations of 5 – 15 days would produce weak plants with poor development.

2013 ◽  
Vol 31 (4) ◽  
pp. 823-832 ◽  
Author(s):  
A. Derakhshan ◽  
J. Gherekhloo

Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.


2014 ◽  
Vol 2 (3) ◽  
pp. 275-278 ◽  
Author(s):  
Tika Bahadur Karki ◽  
Shrawan K. Sah ◽  
Resam B. Thapa ◽  
Andrew J. McDonald ◽  
Adam S. Davis ◽  
...  

Relay cropping of maize with fingermillet (maize/fingermillet) is the predominant cropping system for sustaining food security situation in the hilly regions of Nepal. In this region weed pressure severely reduces crop yields. Basic information on weed species composition, biomass production and their effect on crop yields and economics are lacking for this region. This information will be necessary to develop effective weed management strategies for the future. In light of this an empirical study was carried out in two representatives mid hill districts of Parbat and Baglung during summer season of 2010/2011 in Nepal. A total of 10 major weed species with densities of 172 in Parbat and 311 per 0.25m2 area in Baglung were observed. The highest percentage of both relative and absolute densities were recorded for Ageratum conyzoides in Parbat and Polygonum chinensis in Baglung. Weed infestation under farmers practice of crop management reduced the grain yield of maize by 1.985 Mt ha-1 (117%) in Baglung and 1.760 Mt ha-1 (108%) in Parbat. Similarly, in finger millet it was 0.489 Mt ha-1 (63%) in Baglung and 0.403 Mt ha-1 in Parbat. Similarly, the combined yield of both the crops was also significantly reduced by 79.3% and 61.7% in Baglung and Parbat respectively. Hence, weeds are directly affecting the crop performance in the region. Therefore, there is an urgent need to develop an alternative crop production system in the hills. DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.10790Int J Appl Sci Biotechnol, Vol. 2(3): 275-278  


Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Wei Tang ◽  
Jie Chen ◽  
Jianping Zhang ◽  
Yongliang Lu

Triquetrous murdannia is an annual weed commonly found in rice fields in China. Laboratory and screenhouse experiments were carried out to determine the effect of light, temperature, osmotic and salt stress, seed burial depth, amount of rice residue, and depth of flooding on seed germination and seedling emergence of triquetrous murdannia and to evaluate the response of this weed to commonly available POST herbicides in China. Germination was greater than 93% under a wide day/night temperature range of 20/10 to 30/20 C in the light/dark regime. The time to onset of germination decreased as temperature increased. Germination was slightly stimulated when seeds were placed in light/dark conditions compared with seeds placed in the dark. The osmotic potential and NaCl concentration required for 50% inhibition of maximum germination were −0.5 MPa and 122 mM, respectively. The highest germination (68%) was observed from seeds sown on the soil surface, but decreased with increasing burial depth. Only 7% of seedlings emerged from a depth of 4 cm, and no seedlings emerged from seeds buried deeper than 6 cm. Seedling emergence decreased from 93 to 35% with increasing quantity of rice residue (1 to 6 103kg ha−1) applied on the soil surface. Seedling emergence was reduced by 40, 48, 64, and 70% at flooding depths of 1, 2, 4, and 6 cm, respectively, for the seeds sown on the soil surface. Fluroxypyr and MCPA herbicides provided 100% control of triquetrous murdannia at the 2- to 6-leaf stages; however, to achieve 100% control with bispyribac-sodium, MCPA+bentazone or MCPA+fluroxypyr, herbicides had to be applied by the 4-leaf stage. The results of this study could help in developing more sustainable and effective integrated weed management strategies for the control of triquetrous murdannia in rice fields in China.


Weed Science ◽  
2015 ◽  
Vol 63 (1) ◽  
pp. 312-320 ◽  
Author(s):  
Heino B. Papenfus ◽  
Manoj G. Kulkarni ◽  
Martin Pošta ◽  
Jeffrey F. Finnie ◽  
Johannes Van Staden

Weeds pose a great problem to farmers worldwide, and controlling weeds demands a high input cost for herbicides and labor. Because of current environmental regulations, a limited number of herbicides are commercially available (with limited modes of action) to control weeds. Smoke water and the biologically active compounds isolated from smoke affect seed germination in a significant way. Smoke water (SW) and karrikinolide (KAR1, the germination stimulant isolated from smoke) have been tested extensively for their ability to promote seed germination in a vast array of plant species. In addition to KAR1, a germination inhibitor, trimethylbutenolide (TMB), was also isolated from plant-derived smoke. The effects of SW, KAR1, and TMB were tested on five major weed species of South Africa: fleabane, hairy wild lettuce, bugweed, spilanthes, and fameflower. Seeds of these weed species were subjected to 16/8 h light/dark conditions or to constant dark conditions at constant temperatures of 20, 25, 30 C and alternating 30/20 C. SW and KAR1significantly increased germination, whereas TMB significantly inhibited germination of these weed species. Furthermore, TMB treatment reduced the amylase activity of the tested weed seeds compared with the water control. These results indicate the possibility of manipulating germination of certain weed seeds by SW, KAR1, and TMB. Thus, smoke and smoke-isolated compounds could potentially be used in new weed management strategies.


2000 ◽  
Vol 53 ◽  
pp. 28-33 ◽  
Author(s):  
A. Rahman ◽  
T.K. James ◽  
J. Mellsop ◽  
N. Grbavac

The influence of four cultivation treatments viz ploughing rotary hoeing power harrowing and no soil disturbance on the distribution of weed seeds in the soil profile was investigated in a field trial Weed seeds were counted by dry sieving soil samples collected from 05 510 1015 and 1520 cm depths The density and species of weeds that emerged in field plots were also recorded at threeweekly intervals Samples from undisturbed plots showed a linear decline with depth Ploughing was the only treatment that caused a significant shift of seeds to the deeper profile Ploughed plots had significantly fewer weed seedlings than other treatments due to lower numbers of both summer grasses and broadleaf weeds Undisturbed plots contained significantly fewer broadleaf species and weed emergence was delayed Implications of these results for seedbank sampling methodology and weed management strategies are discussed


Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 403-409 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
Seth B. Abugho

Crop residues acting as mulches can influence weed seedling emergence and weed biomass. A field study was conducted to evaluate the effect of rice residue amounts (0, 3, and 6 t ha−1) on seedling emergence of eight weed species in zero-till dry-seeded rice. The highest seedling emergence of spiny amaranth, southern crabgrass, crowfootgrass, junglerice, eclipta, goosegrass, and Chinese sprangletop was observed in the absence of residue. Seedling emergence of these weeds declined with increasing residue amounts; however, the greatest and most substantial reductions in emergence occurred with 6 t ha−1of residue. The presence of residue also resulted in less weed biomass than with the no-residue treatment. The emergence and biomass of threelobe morningglory seedlings, however, were not influenced by residue amounts. The use of residue also increased the time taken to reach 50% of maximum emergence for some species, for example, spiny amaranth and Chinese sprangletop. The results of our study suggest that the use of residue at high rates can help suppress seedling emergence and growth of many weeds. However, there is a need to integrate other weed management strategies with residue retention to achieve season-long weed control.


Weed Science ◽  
2018 ◽  
Vol 66 (4) ◽  
pp. 485-493 ◽  
Author(s):  
Samuel G. L. Kleemann ◽  
Gurjeet Gill

AbstractWinged sea lavender [Limonium lobatum(L.f. Chaz)] is emerging as a significant weed of field crops in southern Australia. Several environmental factors affecting germination and seedling recruitment were examined to provide a better understanding of the behavior of its seedbank. At maturity, weed seeds were dormant for a period of around 2 mo, but dormancy was easily broken with scarification or by pretreatment with 564 mM NaOCL for 30 min, which confirms the role of the seed coat in regulating seed germination. Exposure to light significantly increased germination. Seeds were able to germinate over a broad range of temperatures (5 to 30 C), with maximum germination (~92%) at temperatures between 10 and 30 C. At 20 to 25 C, 50% germination was reached within 1.3 to 2 d, and the predicted base temperature for germination of the two populations ranged from 1.4 to 3.9 C. The NaCl concentration required to inhibit germination by 50% was 230 mM, with some seeds capable of germination at salinity levels as high as 480 mM. These results indicated greater tolerance to salinity inL. lobatumthan many other Australian agricultural weed species previously investigated. Seedling emergence was the highest (51% to 57%) for seeds present on the soil surface and was significantly reduced by burial at 1 cm (≤11%) and 2 cm (≤2%), with no emergence at 5 cm. Under field conditions, seedling recruitment varied considerably among the three experimental sites. The level of seedling recruitment was negatively associated with rainfall received at the site, organic carbon (OC) level, and microbial biomass of the soil. Rapid decay of weed seeds in high-OC soils appears to be an important determinant of seedling recruitment in this species and could explain greater occurrence ofL. lobatumon soils with low OC and low microbial activity in low-rainfall areas of southern Australia. Furthermore, many such soils in southern Australia are affected by salinity, which would enableL. lobatumto be more competitive with crops and other weeds present at a site.


Weed Science ◽  
2015 ◽  
Vol 63 (2) ◽  
pp. 491-501 ◽  
Author(s):  
Sharif Ahmed ◽  
Jhoana L. Opeña ◽  
Bhagirath S. Chauhan

This study was conducted in the laboratory and screenhouse to determine the effects of temperature, light, osmotic stress, salt stress, burial depth, use of crop residues as mulch, depth of flooding, and use of POST herbicides on the emergence, survival, and growth of doveweed. In the light/dark regime, germination was higher at alternating day/night temperatures of 35/25 C (95%) than at 30/20 C (72%), and no germination occurred at 25/15 C. Light strongly influenced germination (95%) and dark completely inhibited germination. No germination occurred at an osmotic potential of −0.8 MPa and a salt concentration of 150 mM and above. The highest germination (91%) was observed from the seeds sown on the soil surface and emergence decreased by 78, 86, and 92% when burial depths were increased to 0.5, 1, and 2 cm, respectively. No seedlings emerged from seeds buried at depths of more than 2 cm. The use of rice residues as mulch significantly reduced the emergence and growth of doveweed seedlings. The amount of residue required to suppress 50% of the maximum biomass was 2.5 t ha−1. Flooding had a more pronounced effect on seedling biomass than seedling emergence. Biomass was reduced by 78, 92, and 96% when flooding depths increased from 0 to 2, 4, and 6 cm, respectively, for the seeds placed on the soil surface, whereas for the seeds buried at 0.5 cm, these values were 78, 100, and 100%. Bentazon (100 g ha−1) and bispyribac-sodium (30 g ha−1) provided 100% control of doveweed when applied at the three-leaf stage. Doveweed control was less than 31% with glyphosate rates up to 2,000 g ha−1. The application of 2,4-D (500 g ha−1) provided 100% control of doveweed even when applied at the seven-leaf stage. The information from this study could help in developing more sustainable and effective integrated weed management strategies for the control of this weed and weeds with similar response in dry-seeded rice systems.


2013 ◽  
Vol 11 (1) ◽  
pp. 112-121 ◽  
Author(s):  
AB Siddique ◽  
BS Ismail

Allelopathy is an important factor which contributes in determining distribution of species and their abundance within communities. Plant-plant interference is the combined effect of allelopathy, resource competition, and many other factors. Weed infestation is a major problem limiting the growth and yield of rice. Synthetic herbicide has been used for over 50 years as the prime source of weed control. The repeated use of herbicides in rice has already led to the evolution of resistance in some weed species. The conventional synthetic herbicides are becoming less effective against the resistant weed biotypes. Due to increase in the number of herbicide-resistant weeds and environmental concerns in the use of synthetic herbicides, allelopathy has been gaining preference as one of the considerable efforts in designing alternative weed management strategies. Modern ecotoxicologists and allelopathy researchers have been trying to identify allelochemicals to use as biodegradable pesticide. Two allelochemicals have been discovered, namely hexanedioic acid dioctyl ester and di-n-octyl phthalate which can be used as biopesticide. However, still there is enough scope to conduct such research that will contribute to protect our environment as well as increase food safety. DOI: http://dx.doi.org/10.3329/agric.v11i1.15251 The Agriculturists 2013; 11(1) 112-121


Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 512-516 ◽  
Author(s):  
Bhagirath Singh Chauhan

Crowfootgrass, a C4species, is one of the principal weeds of dry-seeded rice in Asia. Weed management decisions for this species can be derived from knowledge of its seed germination biology. Experiments were conducted in the laboratory and screenhouse to determine the effects of light, alternating day/night temperatures, water stress, seed burial depth, and rice residue on seed germination and seedling emergence of crowfootgrass and to evaluate the response of this weed to commonly available selective POST herbicides in the Philippines. Light stimulated seed germination, but it was not an absolute requirement for germination. Germination in the light/dark regime was greater at alternating day/night temperatures of 25/15 C (92%) than at 30/20 (70%) or 35/25 C (44%). The osmotic potential required for 50% inhibition of maximum germination was −0.23 MPa, although some seeds germinated at −0.6 MPa. Seedling emergence was greatest for the seeds placed on the soil surface (64%), and emergence declined with increased burial depth in soil. No seedlings emerged from a burial depth of 6 cm or greater. Seedling emergence of crowfootgrass was reduced by the addition of rice residue to the soil surface at rates equivalent to 4 to 6 Mg ha−1. Fenoxaprop-p-ethyl + ethoxysulfuron at 45 g ai ha−1provided excellent control of crowfootgrass when applied at the four- (99%) and six-leaf (86%) stage. The information gained from this study could contribute to developing components of integrated weed management strategies for crowfootgrass. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence, use of crop residue as mulch, and early application of an effective POST herbicide could serve as important tools for managing crowfootgrass.


Sign in / Sign up

Export Citation Format

Share Document